feat: optuna optimization performed
This commit is contained in:
parent
2ab4abdf93
commit
fe207962de
5 changed files with 15 additions and 18 deletions
|
|
@ -13,7 +13,7 @@ from .train import train
|
|||
|
||||
def create_model(trial: tr.Trial, vocab_size: int = 256):
|
||||
hidden_dim = trial.suggest_int("hidden_dim", 64, 512, log=True)
|
||||
embedding_dim = trial.suggest_int("embedding_dim", 64, 512, log=True)
|
||||
embedding_dim = trial.suggest_int("embed_dim", 64, 512, log=True)
|
||||
|
||||
return CNNPredictor(
|
||||
vocab_size=vocab_size,
|
||||
|
|
|
|||
|
|
@ -56,6 +56,4 @@ def train(
|
|||
avg_loss = sum(losses) / len(losses)
|
||||
avg_validation_losses.append(avg_loss)
|
||||
|
||||
tqdm.write(f"epoch: {epoch + 1}, avg val loss = {avg_loss:.4f}")
|
||||
|
||||
return avg_training_losses, avg_validation_losses
|
||||
|
|
|
|||
Reference in a new issue