feat: optuna optimization performed

This commit is contained in:
RobinMeersman 2025-11-27 22:35:27 +01:00
parent 2ab4abdf93
commit fe207962de
5 changed files with 15 additions and 18 deletions

View file

@ -6,7 +6,7 @@ class CNNPredictor(nn.Module):
self,
vocab_size=256,
embed_dim=64,
hidden_channels=128,
hidden_dim=128,
):
super().__init__()
@ -15,11 +15,11 @@ class CNNPredictor(nn.Module):
# 2. Convolutional feature extractor
self.conv_layers = nn.Sequential(
nn.Conv1d(embed_dim, hidden_channels, kernel_size=5, padding=2),
nn.Conv1d(embed_dim, hidden_dim, kernel_size=5, padding=2),
nn.ReLU(),
nn.Conv1d(hidden_channels, hidden_channels, kernel_size=5, padding=2),
nn.Conv1d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
nn.ReLU(),
nn.Conv1d(hidden_channels, hidden_channels, kernel_size=5, padding=2),
nn.Conv1d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
nn.ReLU(),
)
@ -27,7 +27,7 @@ class CNNPredictor(nn.Module):
self.pool = nn.AdaptiveAvgPool1d(1) # → (B, hidden_channels, 1)
# 4. Final classifier
self.fc = nn.Linear(hidden_channels, vocab_size) # → (B, 256)
self.fc = nn.Linear(hidden_dim, vocab_size) # → (B, 256)
def forward(self, x):
"""