feat: added simple check to distinguish other model types from transformer
This commit is contained in:
parent
8311eabd4d
commit
f97c7c9130
3 changed files with 62 additions and 57 deletions
|
|
@ -18,8 +18,9 @@ def create_model(trial: tr.Trial, model: nn.Module):
|
|||
)
|
||||
case Transformer.__class__:
|
||||
nhead = trial.suggest_categorical("nhead", [2, 4, 8]) # Only powers of 2
|
||||
# d_model_dim = nhead * trial.suggest_int("d_model_mult", 64 // nhead, 512 // nhead)
|
||||
return model(
|
||||
d_model=nhead * trial.suggest_int("d_model_mult", 64 // nhead, 512 // nhead),
|
||||
d_model=128, # hard coded for now as data loaders provide fixed (B, 128) tensors
|
||||
nhead=nhead,
|
||||
num_encoder_layers=trial.suggest_int("num_encoder_layers", 2, 6, log=True),
|
||||
num_decoder_layers=trial.suggest_int("num_decoder_layers", 2, 6, log=True),
|
||||
|
|
|
|||
Reference in a new issue