chore: Restructure
This commit is contained in:
parent
8b6c4e17ab
commit
f32f4678e1
62 changed files with 0 additions and 10547 deletions
|
|
@ -1,62 +0,0 @@
|
|||
from typing import Callable
|
||||
|
||||
import optuna
|
||||
import optuna.trial as tr
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from .trainer import Trainer
|
||||
from ..models.cnn import CNNPredictor
|
||||
from .train import train
|
||||
|
||||
|
||||
def create_model(trial: tr.Trial, vocab_size: int = 256):
|
||||
hidden_dim = trial.suggest_int("hidden_dim", 64, 512, log=True)
|
||||
embedding_dim = trial.suggest_int("embed_dim", 64, 512, log=True)
|
||||
|
||||
return CNNPredictor(
|
||||
vocab_size=vocab_size,
|
||||
hidden_dim=hidden_dim,
|
||||
embed_dim=embedding_dim,
|
||||
)
|
||||
|
||||
|
||||
def objective_function(
|
||||
trial: tr.Trial,
|
||||
training_loader: DataLoader,
|
||||
validation_loader: DataLoader,
|
||||
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
device: str
|
||||
):
|
||||
model = create_model(trial).to(device)
|
||||
_, validation_loss = train(model, training_loader, validation_loader, loss_fn)
|
||||
return min(validation_loss)
|
||||
|
||||
|
||||
class OptunaTrainer(Trainer):
|
||||
def __init__(self, n_trials: int | None = None):
|
||||
super().__init__()
|
||||
self.n_trials = n_trials if n_trials is not None else 20
|
||||
print(f"Creating Optuna trainer(n_trials = {self.n_trials})")
|
||||
|
||||
def execute(
|
||||
self,
|
||||
model: nn.Module | None,
|
||||
train_loader: DataLoader,
|
||||
validation_loader: DataLoader,
|
||||
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
n_epochs: int,
|
||||
device: str
|
||||
) -> None:
|
||||
study = optuna.create_study(study_name="CNN network", direction="minimize")
|
||||
study.optimize(
|
||||
lambda trial: objective_function(trial, train_loader, validation_loader, loss_fn, device),
|
||||
n_trials=self.n_trials
|
||||
)
|
||||
|
||||
best_params = study.best_trial.params
|
||||
best_model = CNNPredictor(
|
||||
**best_params
|
||||
)
|
||||
torch.save(best_model, f"saved_models/{model.__class__.__name__}.pt")
|
||||
Reference in a new issue