feat: initial for IDF
This commit is contained in:
commit
ef4684ef39
27 changed files with 2830 additions and 0 deletions
154
integer_discrete_flows/models/networks.py
Normal file
154
integer_discrete_flows/models/networks.py
Normal file
|
|
@ -0,0 +1,154 @@
|
|||
"""
|
||||
Collection of flow strategies
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from models.utils import Base
|
||||
|
||||
|
||||
UNIT_TESTING = False
|
||||
|
||||
|
||||
class Conv2dReLU(Base):
|
||||
def __init__(
|
||||
self, n_inputs, n_outputs, kernel_size=3, stride=1, padding=0,
|
||||
bias=True):
|
||||
super().__init__()
|
||||
|
||||
self.nn = nn.Conv2d(n_inputs, n_outputs, kernel_size, padding=padding)
|
||||
|
||||
def forward(self, x):
|
||||
h = self.nn(x)
|
||||
|
||||
y = F.relu(h)
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class ResidualBlock(Base):
|
||||
def __init__(self, n_channels, kernel, Conv2dAct):
|
||||
super().__init__()
|
||||
|
||||
self.nn = torch.nn.Sequential(
|
||||
Conv2dAct(n_channels, n_channels, kernel, padding=1),
|
||||
torch.nn.Conv2d(n_channels, n_channels, kernel, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
h = self.nn(x)
|
||||
h = F.relu(h + x)
|
||||
return h
|
||||
|
||||
|
||||
class DenseLayer(Base):
|
||||
def __init__(self, args, n_inputs, growth, Conv2dAct):
|
||||
super().__init__()
|
||||
|
||||
conv1x1 = Conv2dAct(
|
||||
n_inputs, n_inputs, kernel_size=1, stride=1,
|
||||
padding=0, bias=True)
|
||||
|
||||
self.nn = torch.nn.Sequential(
|
||||
conv1x1,
|
||||
Conv2dAct(
|
||||
n_inputs, growth, kernel_size=3, stride=1,
|
||||
padding=1, bias=True),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
h = self.nn(x)
|
||||
|
||||
h = torch.cat([x, h], dim=1)
|
||||
return h
|
||||
|
||||
|
||||
class DenseBlock(Base):
|
||||
def __init__(
|
||||
self, args, n_inputs, n_outputs, kernel, Conv2dAct):
|
||||
super().__init__()
|
||||
depth = args.densenet_depth
|
||||
|
||||
future_growth = n_outputs - n_inputs
|
||||
|
||||
layers = []
|
||||
|
||||
for d in range(depth):
|
||||
growth = future_growth // (depth - d)
|
||||
|
||||
layers.append(DenseLayer(args, n_inputs, growth, Conv2dAct))
|
||||
n_inputs += growth
|
||||
future_growth -= growth
|
||||
|
||||
self.nn = torch.nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.nn(x)
|
||||
|
||||
|
||||
class Identity(Base):
|
||||
def __init__(self):
|
||||
super.__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class NN(Base):
|
||||
def __init__(
|
||||
self, args, c_in, c_out, height, width, nn_type, kernel=3):
|
||||
super().__init__()
|
||||
|
||||
Conv2dAct = Conv2dReLU
|
||||
n_channels = args.n_channels
|
||||
|
||||
if nn_type == 'shallow':
|
||||
|
||||
if args.network1x1 == 'standard':
|
||||
conv1x1 = Conv2dAct(
|
||||
n_channels, n_channels, kernel_size=1, stride=1,
|
||||
padding=0, bias=False)
|
||||
|
||||
layers = [
|
||||
Conv2dAct(c_in, n_channels, kernel, padding=1),
|
||||
conv1x1]
|
||||
|
||||
layers += [torch.nn.Conv2d(n_channels, c_out, kernel, padding=1)]
|
||||
|
||||
elif nn_type == 'resnet':
|
||||
layers = [
|
||||
Conv2dAct(c_in, n_channels, kernel, padding=1),
|
||||
ResidualBlock(n_channels, kernel, Conv2dAct),
|
||||
ResidualBlock(n_channels, kernel, Conv2dAct)]
|
||||
|
||||
layers += [
|
||||
torch.nn.Conv2d(n_channels, c_out, kernel, padding=1)
|
||||
]
|
||||
|
||||
elif nn_type == 'densenet':
|
||||
layers = [
|
||||
DenseBlock(
|
||||
args=args,
|
||||
n_inputs=c_in,
|
||||
n_outputs=n_channels + c_in,
|
||||
kernel=kernel,
|
||||
Conv2dAct=Conv2dAct)]
|
||||
|
||||
layers += [
|
||||
torch.nn.Conv2d(n_channels + c_in, c_out, kernel, padding=1)
|
||||
]
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
self.nn = torch.nn.Sequential(*layers)
|
||||
|
||||
# Set parameters of last conv-layer to zero.
|
||||
if not UNIT_TESTING:
|
||||
self.nn[-1].weight.data.zero_()
|
||||
self.nn[-1].bias.data.zero_()
|
||||
|
||||
def forward(self, x):
|
||||
return self.nn(x)
|
||||
Reference in a new issue