feat: initial for IDF
This commit is contained in:
commit
ef4684ef39
27 changed files with 2830 additions and 0 deletions
67
integer_discrete_flows/coding/rans.py
Normal file
67
integer_discrete_flows/coding/rans.py
Normal file
|
|
@ -0,0 +1,67 @@
|
|||
"""
|
||||
Closely based on https://github.com/rygorous/ryg_rans/blob/master/rans64.h
|
||||
|
||||
ROUGH GUIDE:
|
||||
We use the pythonic names 'append' and 'pop' for encoding and decoding
|
||||
respectively. The compressed state 'x' is an immutable stack, implemented using
|
||||
a cons list.
|
||||
|
||||
x: the current stack-like state of the encoder/decoder.
|
||||
|
||||
precision: the natural numbers are divided into ranges of size 2^precision.
|
||||
|
||||
start & freq: start indicates the beginning of the range in [0, 2^precision-1]
|
||||
that the current symbol is represented by. freq is the length of the range.
|
||||
freq is chosen such that p(symbol) ~= freq/2^precision.
|
||||
"""
|
||||
import numpy as np
|
||||
from functools import reduce
|
||||
|
||||
|
||||
rans_l = 1 << 31 # the lower bound of the normalisation interval
|
||||
tail_bits = (1 << 32) - 1
|
||||
|
||||
x_init = (rans_l, ())
|
||||
|
||||
def append(x, start, freq, precision):
|
||||
"""Encodes a symbol with range [start, start + freq). All frequencies are
|
||||
assumed to sum to "1 << precision", and the resulting bits get written to
|
||||
x."""
|
||||
if x[0] >= ((rans_l >> precision) << 32) * freq:
|
||||
x = (x[0] >> 32, (x[0] & tail_bits, x[1]))
|
||||
return ((x[0] // freq) << precision) + (x[0] % freq) + start, x[1]
|
||||
|
||||
def pop(x_, precision):
|
||||
"""Advances in the bit stream by "popping" a single symbol with range start
|
||||
"start" and frequency "freq"."""
|
||||
cf = x_[0] & ((1 << precision) - 1)
|
||||
def pop(start, freq):
|
||||
x = freq * (x_[0] >> precision) + cf - start, x_[1]
|
||||
return ((x[0] << 32) | x[1][0], x[1][1]) if x[0] < rans_l else x
|
||||
return cf, pop
|
||||
|
||||
def append_symbol(statfun, precision):
|
||||
def append_(x, symbol):
|
||||
start, freq = statfun(symbol)
|
||||
return append(x, start, freq, precision)
|
||||
return append_
|
||||
|
||||
def pop_symbol(statfun, precision):
|
||||
def pop_(x):
|
||||
cf, pop_fun = pop(x, precision)
|
||||
symbol, (start, freq) = statfun(cf)
|
||||
return pop_fun(start, freq), symbol
|
||||
return pop_
|
||||
|
||||
def flatten(x):
|
||||
"""Flatten a rans state x into a 1d numpy array."""
|
||||
out, x = [x[0] >> 32, x[0]], x[1]
|
||||
while x:
|
||||
x_head, x = x
|
||||
out.append(x_head)
|
||||
return np.asarray(out, dtype=np.uint32)
|
||||
|
||||
def unflatten(arr):
|
||||
"""Unflatten a 1d numpy array into a rans state."""
|
||||
return (int(arr[0]) << 32 | int(arr[1]),
|
||||
reduce(lambda tl, hd: (int(hd), tl), reversed(arr[2:]), ()))
|
||||
Reference in a new issue