feat: transformer fixed

This commit is contained in:
Robin Meersman 2025-12-10 14:46:10 +01:00
parent f97c7c9130
commit d12bb25d0a
5 changed files with 65 additions and 44 deletions

View file

@ -5,7 +5,7 @@ from torch.utils.data import DataLoader
from .train import train
from .trainer import Trainer
from ..models import Model, CNNPredictor, Transformer
from ..models import Model, CNNPredictor, ByteTransformer
def create_model(trial: tr.Trial, model: nn.Module):
@ -16,7 +16,7 @@ def create_model(trial: tr.Trial, model: nn.Module):
embed_dim=trial.suggest_int("embed_dim", 64, 512, log=True),
vocab_size=256,
)
case Transformer.__class__:
case ByteTransformer.__class__:
nhead = trial.suggest_categorical("nhead", [2, 4, 8]) # Only powers of 2
# d_model_dim = nhead * trial.suggest_int("d_model_mult", 64 // nhead, 512 // nhead)
return model(

View file

@ -1,15 +1,31 @@
from typing import Callable
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from typing import Callable
from ..models import ByteTransformer, Model
def _forward(model: Model, x: torch.Tensor, device: str) -> torch.Tensor:
if isinstance(model, ByteTransformer):
tgt_in = torch.cat([
torch.zeros(x.shape[0], 1, device=device, dtype=torch.long),
x[:, :-1]
], dim=1)
logits = model(x, tgt_in)
# only consider the last time step of the model where the full context
# is available
return logits[:, -1, :]
return model(x)
def train(
model: nn.Module,
model: Model,
training_loader: DataLoader,
validation_loader: DataLoader,
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
loss_fn: Callable,
epochs: int = 100,
learning_rate: float = 1e-3,
weight_decay: float = 1e-8,
@ -17,7 +33,7 @@ def train(
) -> tuple[list[float], list[float]]:
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
avg_training_losses = []
avg_validation_losses = []
@ -34,11 +50,8 @@ def train(
y = y.long().to(device)
optimizer.zero_grad()
if issubclass(type(model), nn.Transformer):
tgt = torch.cat([x[:, 1:], y.unsqueeze(1)], dim=1)
logits = model(x, tgt)
else:
logits = model(x) # (B, 256)
logits = _forward(model, x, device)
loss = loss_fn(logits, y)
loss.backward()
optimizer.step()
@ -55,7 +68,7 @@ def train(
x = x.long().to(device)
y = y.long().to(device)
logits = model(x)
logits = _forward(model, x, device)
loss = loss_fn(logits, y)
losses.append(loss.item())