feat: transformer fixed

This commit is contained in:
Robin Meersman 2025-12-10 14:46:10 +01:00
parent f97c7c9130
commit d12bb25d0a
5 changed files with 65 additions and 44 deletions

View file

@ -1,9 +1,8 @@
from .Model import Model
from .cnn import CNNPredictor
from .transformer import Transformer
from .transformer import ByteTransformer
model_called: dict[str, type[Model]] = {
'cnn': CNNPredictor,
'transformer': Transformer
'transformer': ByteTransformer
}

View file

@ -1 +1 @@
from .transformer import Transformer
from .transformer import ByteTransformer

View file

@ -1,10 +1,23 @@
from typing import Optional
import torch.nn as nn
from torch import Tensor
from torch import Tensor, arange
from src.models import Model
class Transformer(nn.Transformer):
class LearnedPositionalEncoding(Model):
def __init__(self, max_len, d_model):
super().__init__()
self.pos_emb = nn.Embedding(max_len, d_model)
def forward(self, x):
# x: [seq, batch, d_model]
seq_len = x.size(0)
positions = arange(seq_len, device=x.device).unsqueeze(1) # [seq, 1]
return x + self.pos_emb(positions) # broadcast over batch
class ByteTransformer(nn.Module):
def __init__(
self,
d_model=512,
@ -14,9 +27,17 @@ class Transformer(nn.Transformer):
dim_feedforward=2048,
dropout=0.1,
activation="relu",
layer_norm_eps=1e-05
layer_norm_eps=1e-05,
max_len=128
):
super().__init__(
super().__init__()
self.src_embedding = nn.Embedding(256, d_model)
self.tgt_embedding = nn.Embedding(256, d_model)
self.src_pos = LearnedPositionalEncoding(max_len, d_model)
self.tgt_pos = LearnedPositionalEncoding(max_len, d_model)
self.transformer = nn.Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
@ -28,34 +49,22 @@ class Transformer(nn.Transformer):
batch_first=False,
norm_first=False,
device=None,
dtype=None
dtype=None,
)
self.output_proj = nn.Linear(d_model, 256)
self.loss_function = nn.CrossEntropyLoss()
def forward(
self,
src: Tensor,
tgt: Tensor,
src_mask: Optional[Tensor] = None,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
src_is_causal: Optional[bool] = None,
tgt_is_causal: Optional[bool] = None,
memory_is_causal: bool = False,
) -> Tensor:
return super().forward(
src,
tgt,
src_mask,
tgt_mask,
memory_mask,
src_key_padding_mask,
tgt_key_padding_mask,
memory_key_padding_mask,
src_is_causal,
tgt_is_causal,
memory_is_causal,
)
src_embeds = self.src_embedding(src)
tgt_embeds = self.tgt_embedding(tgt)
src_pos = self.src_pos(src_embeds)
tgt_pos = self.tgt_pos(tgt_embeds)
return self.output_proj(self.transformer(src_pos, tgt_pos))

View file

@ -5,7 +5,7 @@ from torch.utils.data import DataLoader
from .train import train
from .trainer import Trainer
from ..models import Model, CNNPredictor, Transformer
from ..models import Model, CNNPredictor, ByteTransformer
def create_model(trial: tr.Trial, model: nn.Module):
@ -16,7 +16,7 @@ def create_model(trial: tr.Trial, model: nn.Module):
embed_dim=trial.suggest_int("embed_dim", 64, 512, log=True),
vocab_size=256,
)
case Transformer.__class__:
case ByteTransformer.__class__:
nhead = trial.suggest_categorical("nhead", [2, 4, 8]) # Only powers of 2
# d_model_dim = nhead * trial.suggest_int("d_model_mult", 64 // nhead, 512 // nhead)
return model(

View file

@ -1,15 +1,31 @@
from typing import Callable
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from typing import Callable
from ..models import ByteTransformer, Model
def _forward(model: Model, x: torch.Tensor, device: str) -> torch.Tensor:
if isinstance(model, ByteTransformer):
tgt_in = torch.cat([
torch.zeros(x.shape[0], 1, device=device, dtype=torch.long),
x[:, :-1]
], dim=1)
logits = model(x, tgt_in)
# only consider the last time step of the model where the full context
# is available
return logits[:, -1, :]
return model(x)
def train(
model: nn.Module,
model: Model,
training_loader: DataLoader,
validation_loader: DataLoader,
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
loss_fn: Callable,
epochs: int = 100,
learning_rate: float = 1e-3,
weight_decay: float = 1e-8,
@ -17,7 +33,7 @@ def train(
) -> tuple[list[float], list[float]]:
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
avg_training_losses = []
avg_validation_losses = []
@ -34,11 +50,8 @@ def train(
y = y.long().to(device)
optimizer.zero_grad()
if issubclass(type(model), nn.Transformer):
tgt = torch.cat([x[:, 1:], y.unsqueeze(1)], dim=1)
logits = model(x, tgt)
else:
logits = model(x) # (B, 256)
logits = _forward(model, x, device)
loss = loss_fn(logits, y)
loss.backward()
optimizer.step()
@ -55,7 +68,7 @@ def train(
x = x.long().to(device)
y = y.long().to(device)
logits = model(x)
logits = _forward(model, x, device)
loss = loss_fn(logits, y)
losses.append(loss.item())