Streamline datasets

This commit is contained in:
Tibo De Peuter 2025-12-04 23:13:16 +01:00
parent 849bcd7b77
commit befb1a96a5
Signed by: tdpeuter
GPG key ID: 38297DE43F75FFE2
8 changed files with 222 additions and 64 deletions

View file

@ -10,6 +10,8 @@ from trainers import OptunaTrainer, Trainer, FullTrainer
def parse_arguments():
parser = ArgumentParser(prog="NeuralCompression")
parser.add_argument("--debug", "-d", action="store_true", required=False,
help="Enable debug mode: smaller datasets, more information")
parser.add_argument("--verbose", "-v", action="store_true", required=False,
help="Enable verbose mode")
@ -18,7 +20,7 @@ def parse_arguments():
dataparser.add_argument("--dataset", choices=dataset_called.keys(), required=True)
modelparser = ArgumentParser(add_help=False)
modelparser.add_argument("--model-path", type=str, required=True,
modelparser.add_argument("--model-path", type=str, required=False,
help="Path to the model to load/save")
fileparser = ArgumentParser(add_help=False)
@ -33,6 +35,8 @@ def parse_arguments():
help="Only fetch the dataset, then exit")
train_parser = subparsers.add_parser("train", parents=[dataparser, modelparser])
train_parser.add_argument("--method", choices=["optuna", "full"], required=True,
help="Method to use for training")
# TODO
compress_parser = subparsers.add_parser("compress", parents=[modelparser, fileparser])
@ -44,7 +48,7 @@ def parse_arguments():
def main():
BATCH_SIZE = 64
BATCH_SIZE = 2
# hyper parameters
context_length = 128
@ -57,9 +61,18 @@ def main():
DEVICE = "cpu"
print(f"Running on device: {DEVICE}...")
dataset_common_args = {
'root': args.data_root,
'transform': lambda x: x.to(DEVICE)
}
if args.debug:
dataset_common_args['size'] = 2**10
print("Loading in the dataset...")
if args.dataset in dataset_called:
dataset = dataset_called[args.dataset](root=args.data_root, transform=lambda x: x.to(DEVICE))
training_set = dataset_called[args.dataset](split='train', **dataset_common_args)
validate_set = dataset_called[args.dataset](split='validation', **dataset_common_args)
else:
# TODO Allow to import arbitrary files
raise NotImplementedError(f"Importing external datasets is not implemented yet")
@ -68,16 +81,10 @@ def main():
# TODO More to earlier in chain, because now everything is converted into tensors as well?
exit(0)
dataset_length = len(dataset)
print(f"Dataset size = {dataset_length}")
training_size = ceil(0.8 * dataset_length)
print(f"Training set size = {training_size}, Validation set size {dataset_length - training_size}")
train_set, validate_set = torch.utils.data.random_split(dataset, [training_size, dataset_length - training_size])
training_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
print(f"Training set size = {len(training_set)}, Validation set size {len(validate_set)}")
training_loader = DataLoader(training_set, batch_size=BATCH_SIZE, shuffle=True)
validation_loader = DataLoader(validate_set, batch_size=BATCH_SIZE, shuffle=False)
loss_fn = torch.nn.CrossEntropyLoss()
model = None
@ -85,8 +92,9 @@ def main():
print("Loading the model...")
model = torch.load(args.model_path)
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer()
trainer: Trainer = OptunaTrainer(n_trials=3 if args.debug else None) if args.method == "optuna" else FullTrainer()
print("Training")
trainer.execute(
model=model,
train_loader=training_loader,