Streamline datasets

This commit is contained in:
Tibo De Peuter 2025-12-04 23:13:16 +01:00
parent 849bcd7b77
commit befb1a96a5
Signed by: tdpeuter
GPG key ID: 38297DE43F75FFE2
8 changed files with 222 additions and 64 deletions

View file

@ -1,32 +1,63 @@
from math import ceil
from typing import Callable
import torch
from lorem.text import TextLorem
from tqdm import tqdm
from .Dataset import Dataset
class LoremIpsumDataset(Dataset):
def __init__(self, root: str | None = None, transform: Callable = None, size: int = 512):
super().__init__('lorem_ipsum', root, transform)
def __init__(self,
root: str | None = None,
split: str = 'train',
transform: Callable = None,
size: int = 2**30
):
super().__init__('lorem_ipsum', root, split, transform, size)
# Generate text and convert to bytes
_lorem = TextLorem()
_text = ' '.join(_lorem._word() for _ in range(size))
# Convert text to bytes (UTF-8 encoded)
self.dataset = torch.tensor([ord(c) % 256 for c in list(_text)], dtype=torch.long)
self.data = ' '.join(_lorem._word() for _ in tqdm(range(size), desc="Generating data"))
self.size = size
self.context_length = 128
self.process_data()
split_point = ceil(self.chunk_offsets[-1] * 0.8)
if self.split == 'train':
self.start_byte = 0
self.end_byte = split_point
elif self.split == 'validation':
self.start_byte = split_point
self.end_byte = self.chunk_offsets[-1]
else:
raise ValueError("split must be 'train' or 'validation'")
print("Done initializing dataset")
def __len__(self):
# Number of possible sequences of length sequence_length
return self.dataset.size(0) - self.context_length
return self.end_byte - self.start_byte - self.context_length
def __getitem__(self, idx):
x = self.dataset[idx: idx + self.context_length]
y = self.dataset[idx + self.context_length]
# Get sequence of characters
# x_str = self.text[idx: idx + self.context_length]
# y_char = self.text[idx + self.context_length]
#
# # Convert to tensors
# x = torch.tensor([ord(c) % 256 for c in x_str], dtype=torch.long)
# y = torch.tensor(ord(y_char) % 256, dtype=torch.long)
#
# if self.transform is not None:
# x = self.transform(x)
#
# return x, y
x = self.tensor[self.start_byte + idx:self.start_byte + idx + self.context_length]
y = self.tensor[self.start_byte + idx + self.context_length]
if self.transform is not None:
if self.transform:
x = self.transform(x)
return x, y