chore: Add reference AE
This commit is contained in:
parent
fc75ab51b0
commit
817c16bde4
1 changed files with 601 additions and 0 deletions
601
src/utils/reference_ae.py
Normal file
601
src/utils/reference_ae.py
Normal file
|
|
@ -0,0 +1,601 @@
|
|||
#
|
||||
# Reference arithmetic coding
|
||||
#
|
||||
# Copyright (c) Project Nayuki
|
||||
# MIT License. See readme file.
|
||||
# https://www.nayuki.io/page/reference-arithmetic-coding
|
||||
#
|
||||
|
||||
|
||||
# ---- Arithmetic coding core classes ----
|
||||
|
||||
# Provides the state and behaviors that arithmetic coding encoders and decoders share.
|
||||
class ArithmeticCoderBase:
|
||||
|
||||
# Constructs an arithmetic coder, which initializes the code range.
|
||||
def __init__(self, numbits):
|
||||
if numbits < 1:
|
||||
raise ValueError("State size out of range")
|
||||
|
||||
# -- Configuration fields --
|
||||
# Number of bits for the 'low' and 'high' state variables. Must be at least 1.
|
||||
# - Larger values are generally better - they allow a larger maximum frequency total (maximum_total),
|
||||
# and they reduce the approximation error inherent in adapting fractions to integers;
|
||||
# both effects reduce the data encoding loss and asymptotically approach the efficiency
|
||||
# of arithmetic coding using exact fractions.
|
||||
# - But larger state sizes increase the computation time for integer arithmetic,
|
||||
# and compression gains beyond ~30 bits essentially zero in real-world applications.
|
||||
# - Python has native bigint arithmetic, so there is no upper limit to the state size.
|
||||
# For Java and C++ where using native machine-sized integers makes the most sense,
|
||||
# they have a recommended value of num_state_bits=32 as the most versatile setting.
|
||||
self.num_state_bits = numbits
|
||||
# Maximum range (high+1-low) during coding (trivial), which is 2^num_state_bits = 1000...000.
|
||||
self.full_range = 1 << self.num_state_bits
|
||||
# The top bit at width num_state_bits, which is 0100...000.
|
||||
self.half_range = self.full_range >> 1 # Non-zero
|
||||
# The second highest bit at width num_state_bits, which is 0010...000. This is zero when num_state_bits=1.
|
||||
self.quarter_range = self.half_range >> 1 # Can be zero
|
||||
# Minimum range (high+1-low) during coding (non-trivial), which is 0010...010.
|
||||
self.minimum_range = self.quarter_range + 2 # At least 2
|
||||
# Maximum allowed total from a frequency table at all times during coding. This differs from Java
|
||||
# and C++ because Python's native bigint avoids constraining the size of intermediate computations.
|
||||
self.maximum_total = self.minimum_range
|
||||
# Bit mask of num_state_bits ones, which is 0111...111.
|
||||
self.state_mask = self.full_range - 1
|
||||
|
||||
# -- State fields --
|
||||
# Low end of this arithmetic coder's current range. Conceptually has an infinite number of trailing 0s.
|
||||
self.low = 0
|
||||
# High end of this arithmetic coder's current range. Conceptually has an infinite number of trailing 1s.
|
||||
self.high = self.state_mask
|
||||
|
||||
|
||||
# Updates the code range (low and high) of this arithmetic coder as a result
|
||||
# of processing the given symbol with the given frequency table.
|
||||
# Invariants that are true before and after encoding/decoding each symbol
|
||||
# (letting full_range = 2^num_state_bits):
|
||||
# - 0 <= low <= code <= high < full_range. ('code' exists only in the decoder.)
|
||||
# Therefore these variables are unsigned integers of num_state_bits bits.
|
||||
# - low < 1/2 * full_range <= high.
|
||||
# In other words, they are in different halves of the full range.
|
||||
# - (low < 1/4 * full_range) || (high >= 3/4 * full_range).
|
||||
# In other words, they are not both in the middle two quarters.
|
||||
# - Let range = high - low + 1, then full_range/4 < minimum_range
|
||||
# <= range <= full_range. These invariants for 'range' essentially
|
||||
# dictate the maximum total that the incoming frequency table can have.
|
||||
def update(self, freqs, symbol):
|
||||
# State check
|
||||
low = self.low
|
||||
high = self.high
|
||||
if low >= high or (low & self.state_mask) != low or (high & self.state_mask) != high:
|
||||
raise AssertionError("Low or high out of range")
|
||||
range = high - low + 1
|
||||
if not (self.minimum_range <= range <= self.full_range):
|
||||
raise AssertionError("Range out of range")
|
||||
|
||||
# Frequency table values check
|
||||
total = freqs.get_total()
|
||||
symlow = freqs.get_low(symbol)
|
||||
symhigh = freqs.get_high(symbol)
|
||||
if symlow == symhigh:
|
||||
raise ValueError("Symbol has zero frequency")
|
||||
if total > self.maximum_total:
|
||||
raise ValueError("Cannot code symbol because total is too large")
|
||||
|
||||
# Update range
|
||||
newlow = low + symlow * range // total
|
||||
newhigh = low + symhigh * range // total - 1
|
||||
self.low = newlow
|
||||
self.high = newhigh
|
||||
|
||||
# While low and high have the same top bit value, shift them out
|
||||
while ((self.low ^ self.high) & self.half_range) == 0:
|
||||
self.shift()
|
||||
self.low = ((self.low << 1) & self.state_mask)
|
||||
self.high = ((self.high << 1) & self.state_mask) | 1
|
||||
# Now low's top bit must be 0 and high's top bit must be 1
|
||||
|
||||
# While low's top two bits are 01 and high's are 10, delete the second highest bit of both
|
||||
while (self.low & ~self.high & self.quarter_range) != 0:
|
||||
self.underflow()
|
||||
self.low = (self.low << 1) ^ self.half_range
|
||||
self.high = ((self.high ^ self.half_range) << 1) | self.half_range | 1
|
||||
|
||||
|
||||
# Called to handle the situation when the top bit of 'low' and 'high' are equal.
|
||||
def shift(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
# Called to handle the situation when low=01(...) and high=10(...).
|
||||
def underflow(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
|
||||
# Encodes symbols and writes to an arithmetic-coded bit stream.
|
||||
class ArithmeticEncoder(ArithmeticCoderBase):
|
||||
|
||||
# Constructs an arithmetic coding encoder based on the given bit output stream.
|
||||
def __init__(self, numbits, bitout):
|
||||
super(ArithmeticEncoder, self).__init__(numbits)
|
||||
# The underlying bit output stream.
|
||||
self.output = bitout
|
||||
# Number of saved underflow bits. This value can grow without bound.
|
||||
self.num_underflow = 0
|
||||
|
||||
|
||||
# Encodes the given symbol based on the given frequency table.
|
||||
# This updates this arithmetic coder's state and may write out some bits.
|
||||
def write(self, freqs, symbol):
|
||||
if not isinstance(freqs, CheckedFrequencyTable):
|
||||
freqs = CheckedFrequencyTable(freqs)
|
||||
self.update(freqs, symbol)
|
||||
|
||||
|
||||
# Terminates the arithmetic coding by flushing any buffered bits, so that the output can be decoded properly.
|
||||
# It is important that this method must be called at the end of the each encoding process.
|
||||
# Note that this method merely writes data to the underlying output stream but does not close it.
|
||||
def finish(self):
|
||||
self.output.write(1)
|
||||
|
||||
|
||||
def shift(self):
|
||||
bit = self.low >> (self.num_state_bits - 1)
|
||||
self.output.write(bit)
|
||||
|
||||
# Write out the saved underflow bits
|
||||
for _ in range(self.num_underflow):
|
||||
self.output.write(bit ^ 1)
|
||||
self.num_underflow = 0
|
||||
|
||||
|
||||
def underflow(self):
|
||||
self.num_underflow += 1
|
||||
|
||||
|
||||
|
||||
# Reads from an arithmetic-coded bit stream and decodes symbols.
|
||||
class ArithmeticDecoder(ArithmeticCoderBase):
|
||||
|
||||
# Constructs an arithmetic coding decoder based on the
|
||||
# given bit input stream, and fills the code bits.
|
||||
def __init__(self, numbits, bitin):
|
||||
super(ArithmeticDecoder, self).__init__(numbits)
|
||||
# The underlying bit input stream.
|
||||
self.input = bitin
|
||||
# The current raw code bits being buffered, which is always in the range [low, high].
|
||||
self.code = 0
|
||||
for _ in range(self.num_state_bits):
|
||||
self.code = self.code << 1 | self.read_code_bit()
|
||||
|
||||
|
||||
# Decodes the next symbol based on the given frequency table and returns it.
|
||||
# Also updates this arithmetic coder's state and may read in some bits.
|
||||
def read(self, freqs):
|
||||
if not isinstance(freqs, CheckedFrequencyTable):
|
||||
freqs = CheckedFrequencyTable(freqs)
|
||||
|
||||
# Translate from coding range scale to frequency table scale
|
||||
total = freqs.get_total()
|
||||
if total > self.maximum_total:
|
||||
raise ValueError("Cannot decode symbol because total is too large")
|
||||
range = self.high - self.low + 1
|
||||
offset = self.code - self.low
|
||||
value = ((offset + 1) * total - 1) // range
|
||||
assert value * range // total <= offset
|
||||
assert 0 <= value < total
|
||||
|
||||
# A kind of binary search. Find highest symbol such that freqs.get_low(symbol) <= value.
|
||||
start = 0
|
||||
end = freqs.get_symbol_limit()
|
||||
while end - start > 1:
|
||||
middle = (start + end) >> 1
|
||||
if freqs.get_low(middle) > value:
|
||||
end = middle
|
||||
else:
|
||||
start = middle
|
||||
assert start + 1 == end
|
||||
|
||||
symbol = start
|
||||
assert freqs.get_low(symbol) * range // total <= offset < freqs.get_high(symbol) * range // total
|
||||
self.update(freqs, symbol)
|
||||
if not (self.low <= self.code <= self.high):
|
||||
raise AssertionError("Code out of range")
|
||||
return symbol
|
||||
|
||||
|
||||
def shift(self):
|
||||
self.code = ((self.code << 1) & self.state_mask) | self.read_code_bit()
|
||||
|
||||
|
||||
def underflow(self):
|
||||
self.code = (self.code & self.half_range) | ((self.code << 1) & (self.state_mask >> 1)) | self.read_code_bit()
|
||||
|
||||
|
||||
# Returns the next bit (0 or 1) from the input stream. The end
|
||||
# of stream is treated as an infinite number of trailing zeros.
|
||||
def read_code_bit(self):
|
||||
temp = self.input.read()
|
||||
if temp == -1:
|
||||
temp = 0
|
||||
return temp
|
||||
|
||||
|
||||
|
||||
# ---- Frequency table classes ----
|
||||
|
||||
# A table of symbol frequencies. The table holds data for symbols numbered from 0
|
||||
# to get_symbol_limit()-1. Each symbol has a frequency, which is a non-negative integer.
|
||||
# Frequency table objects are primarily used for getting cumulative symbol
|
||||
# frequencies. These objects can be mutable depending on the implementation.
|
||||
class FrequencyTable:
|
||||
|
||||
# Returns the number of symbols in this frequency table, which is a positive number.
|
||||
def get_symbol_limit(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
# Returns the frequency of the given symbol. The returned value is at least 0.
|
||||
def get(self, symbol):
|
||||
raise NotImplementedError()
|
||||
|
||||
# Sets the frequency of the given symbol to the given value.
|
||||
# The frequency value must be at least 0.
|
||||
def set(self, symbol, freq):
|
||||
raise NotImplementedError()
|
||||
|
||||
# Increments the frequency of the given symbol.
|
||||
def increment(self, symbol):
|
||||
raise NotImplementedError()
|
||||
|
||||
# Returns the total of all symbol frequencies. The returned value is at
|
||||
# least 0 and is always equal to get_high(get_symbol_limit() - 1).
|
||||
def get_total(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
# Returns the sum of the frequencies of all the symbols strictly
|
||||
# below the given symbol value. The returned value is at least 0.
|
||||
def get_low(self, symbol):
|
||||
raise NotImplementedError()
|
||||
|
||||
# Returns the sum of the frequencies of the given symbol
|
||||
# and all the symbols below. The returned value is at least 0.
|
||||
def get_high(self, symbol):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
|
||||
# An immutable frequency table where every symbol has the same frequency of 1.
|
||||
# Useful as a fallback model when no statistics are available.
|
||||
class FlatFrequencyTable(FrequencyTable):
|
||||
|
||||
# Constructs a flat frequency table with the given number of symbols.
|
||||
def __init__(self, numsyms):
|
||||
if numsyms < 1:
|
||||
raise ValueError("Number of symbols must be positive")
|
||||
self.numsymbols = numsyms # Total number of symbols, which is at least 1
|
||||
|
||||
# Returns the number of symbols in this table, which is at least 1.
|
||||
def get_symbol_limit(self):
|
||||
return self.numsymbols
|
||||
|
||||
# Returns the frequency of the given symbol, which is always 1.
|
||||
def get(self, symbol):
|
||||
self._check_symbol(symbol)
|
||||
return 1
|
||||
|
||||
# Returns the total of all symbol frequencies, which is
|
||||
# always equal to the number of symbols in this table.
|
||||
def get_total(self):
|
||||
return self.numsymbols
|
||||
|
||||
# Returns the sum of the frequencies of all the symbols strictly below
|
||||
# the given symbol value. The returned value is equal to 'symbol'.
|
||||
def get_low(self, symbol):
|
||||
self._check_symbol(symbol)
|
||||
return symbol
|
||||
|
||||
|
||||
# Returns the sum of the frequencies of the given symbol and all
|
||||
# the symbols below. The returned value is equal to 'symbol' + 1.
|
||||
def get_high(self, symbol):
|
||||
self._check_symbol(symbol)
|
||||
return symbol + 1
|
||||
|
||||
|
||||
# Returns silently if 0 <= symbol < numsymbols, otherwise raises an exception.
|
||||
def _check_symbol(self, symbol):
|
||||
if not (0 <= symbol < self.numsymbols):
|
||||
raise ValueError("Symbol out of range")
|
||||
|
||||
# Returns a string representation of this frequency table. The format is subject to change.
|
||||
def __str__(self):
|
||||
return "FlatFrequencyTable={}".format(self.numsymbols)
|
||||
|
||||
# Unsupported operation, because this frequency table is immutable.
|
||||
def set(self, symbol, freq):
|
||||
raise NotImplementedError()
|
||||
|
||||
# Unsupported operation, because this frequency table is immutable.
|
||||
def increment(self, symbol):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
|
||||
# A mutable table of symbol frequencies. The number of symbols cannot be changed
|
||||
# after construction. The current algorithm for calculating cumulative frequencies
|
||||
# takes linear time, but there exist faster algorithms such as Fenwick trees.
|
||||
class SimpleFrequencyTable(FrequencyTable):
|
||||
|
||||
# Constructs a simple frequency table in one of two ways:
|
||||
# - SimpleFrequencyTable(sequence):
|
||||
# Builds a frequency table from the given sequence of symbol frequencies.
|
||||
# There must be at least 1 symbol, and no symbol has a negative frequency.
|
||||
# - SimpleFrequencyTable(freqtable):
|
||||
# Builds a frequency table by copying the given frequency table.
|
||||
def __init__(self, freqs):
|
||||
if isinstance(freqs, FrequencyTable):
|
||||
numsym = freqs.get_symbol_limit()
|
||||
self.frequencies = [freqs.get(i) for i in range(numsym)]
|
||||
else: # Assume it is a sequence type
|
||||
self.frequencies = list(freqs) # Make copy
|
||||
|
||||
# 'frequencies' is a list of the frequency for each symbol.
|
||||
# Its length is at least 1, and each element is non-negative.
|
||||
if len(self.frequencies) < 1:
|
||||
raise ValueError("At least 1 symbol needed")
|
||||
for freq in self.frequencies:
|
||||
if freq < 0:
|
||||
raise ValueError("Negative frequency")
|
||||
|
||||
# Always equal to the sum of 'frequencies'
|
||||
self.total = sum(self.frequencies)
|
||||
|
||||
# cumulative[i] is the sum of 'frequencies' from 0 (inclusive) to i (exclusive).
|
||||
# Initialized lazily. When it is not None, the data is valid.
|
||||
self.cumulative = None
|
||||
|
||||
|
||||
# Returns the number of symbols in this frequency table, which is at least 1.
|
||||
def get_symbol_limit(self):
|
||||
return len(self.frequencies)
|
||||
|
||||
|
||||
# Returns the frequency of the given symbol. The returned value is at least 0.
|
||||
def get(self, symbol):
|
||||
self._check_symbol(symbol)
|
||||
return self.frequencies[symbol]
|
||||
|
||||
|
||||
# Sets the frequency of the given symbol to the given value. The frequency value
|
||||
# must be at least 0. If an exception is raised, then the state is left unchanged.
|
||||
def set(self, symbol, freq):
|
||||
self._check_symbol(symbol)
|
||||
if freq < 0:
|
||||
raise ValueError("Negative frequency")
|
||||
temp = self.total - self.frequencies[symbol]
|
||||
assert temp >= 0
|
||||
self.total = temp + freq
|
||||
self.frequencies[symbol] = freq
|
||||
self.cumulative = None
|
||||
|
||||
|
||||
# Increments the frequency of the given symbol.
|
||||
def increment(self, symbol):
|
||||
self._check_symbol(symbol)
|
||||
self.total += 1
|
||||
self.frequencies[symbol] += 1
|
||||
self.cumulative = None
|
||||
|
||||
|
||||
# Returns the total of all symbol frequencies. The returned value is at
|
||||
# least 0 and is always equal to get_high(get_symbol_limit() - 1).
|
||||
def get_total(self):
|
||||
return self.total
|
||||
|
||||
|
||||
# Returns the sum of the frequencies of all the symbols strictly
|
||||
# below the given symbol value. The returned value is at least 0.
|
||||
def get_low(self, symbol):
|
||||
self._check_symbol(symbol)
|
||||
if self.cumulative is None:
|
||||
self._init_cumulative()
|
||||
return self.cumulative[symbol]
|
||||
|
||||
|
||||
# Returns the sum of the frequencies of the given symbol
|
||||
# and all the symbols below. The returned value is at least 0.
|
||||
def get_high(self, symbol):
|
||||
self._check_symbol(symbol)
|
||||
if self.cumulative is None:
|
||||
self._init_cumulative()
|
||||
return self.cumulative[symbol + 1]
|
||||
|
||||
|
||||
# Recomputes the array of cumulative symbol frequencies.
|
||||
def _init_cumulative(self):
|
||||
cumul = [0]
|
||||
sum = 0
|
||||
for freq in self.frequencies:
|
||||
sum += freq
|
||||
cumul.append(sum)
|
||||
assert sum == self.total
|
||||
self.cumulative = cumul
|
||||
|
||||
|
||||
# Returns silently if 0 <= symbol < len(frequencies), otherwise raises an exception.
|
||||
def _check_symbol(self, symbol):
|
||||
if not (0 <= symbol < len(self.frequencies)):
|
||||
raise ValueError("Symbol out of range")
|
||||
|
||||
|
||||
# Returns a string representation of this frequency table,
|
||||
# useful for debugging only, and the format is subject to change.
|
||||
def __str__(self):
|
||||
result = ""
|
||||
for (i, freq) in enumerate(self.frequencies):
|
||||
result += "{}\t{}\n".format(i, freq)
|
||||
return result
|
||||
|
||||
|
||||
|
||||
# A wrapper that checks the preconditions (arguments) and postconditions (return value) of all
|
||||
# the frequency table methods. Useful for finding faults in a frequency table implementation.
|
||||
class CheckedFrequencyTable(FrequencyTable):
|
||||
|
||||
def __init__(self, freqtab):
|
||||
# The underlying frequency table that holds the data
|
||||
self.freqtable = freqtab
|
||||
|
||||
|
||||
def get_symbol_limit(self):
|
||||
result = self.freqtable.get_symbol_limit()
|
||||
if result <= 0:
|
||||
raise AssertionError("Non-positive symbol limit")
|
||||
return result
|
||||
|
||||
|
||||
def get(self, symbol):
|
||||
result = self.freqtable.get(symbol)
|
||||
if not self._is_symbol_in_range(symbol):
|
||||
raise AssertionError("ValueError expected")
|
||||
if result < 0:
|
||||
raise AssertionError("Negative symbol frequency")
|
||||
return result
|
||||
|
||||
|
||||
def get_total(self):
|
||||
result = self.freqtable.get_total()
|
||||
if result < 0:
|
||||
raise AssertionError("Negative total frequency")
|
||||
return result
|
||||
|
||||
|
||||
def get_low(self, symbol):
|
||||
if self._is_symbol_in_range(symbol):
|
||||
low = self.freqtable.get_low (symbol)
|
||||
high = self.freqtable.get_high(symbol)
|
||||
if not (0 <= low <= high <= self.freqtable.get_total()):
|
||||
raise AssertionError("Symbol low cumulative frequency out of range")
|
||||
return low
|
||||
else:
|
||||
self.freqtable.get_low(symbol)
|
||||
raise AssertionError("ValueError expected")
|
||||
|
||||
|
||||
def get_high(self, symbol):
|
||||
if self._is_symbol_in_range(symbol):
|
||||
low = self.freqtable.get_low (symbol)
|
||||
high = self.freqtable.get_high(symbol)
|
||||
if not (0 <= low <= high <= self.freqtable.get_total()):
|
||||
raise AssertionError("Symbol high cumulative frequency out of range")
|
||||
return high
|
||||
else:
|
||||
self.freqtable.get_high(symbol)
|
||||
raise AssertionError("ValueError expected")
|
||||
|
||||
|
||||
def __str__(self):
|
||||
return "CheckedFrequencyTable (" + str(self.freqtable) + ")"
|
||||
|
||||
|
||||
def set(self, symbol, freq):
|
||||
self.freqtable.set(symbol, freq)
|
||||
if not self._is_symbol_in_range(symbol) or freq < 0:
|
||||
raise AssertionError("ValueError expected")
|
||||
|
||||
|
||||
def increment(self, symbol):
|
||||
self.freqtable.increment(symbol)
|
||||
if not self._is_symbol_in_range(symbol):
|
||||
raise AssertionError("ValueError expected")
|
||||
|
||||
|
||||
def _is_symbol_in_range(self, symbol):
|
||||
return 0 <= symbol < self.get_symbol_limit()
|
||||
|
||||
|
||||
|
||||
# ---- Bit-oriented I/O streams ----
|
||||
|
||||
# A stream of bits that can be read. Because they come from an underlying byte stream,
|
||||
# the total number of bits is always a multiple of 8. The bits are read in big endian.
|
||||
class BitInputStream:
|
||||
|
||||
# Constructs a bit input stream based on the given byte input stream.
|
||||
def __init__(self, inp):
|
||||
# The underlying byte stream to read from
|
||||
self.input = inp
|
||||
# Either in the range [0x00, 0xFF] if bits are available, or -1 if end of stream is reached
|
||||
self.currentbyte = 0
|
||||
# Number of remaining bits in the current byte, always between 0 and 7 (inclusive)
|
||||
self.numbitsremaining = 0
|
||||
|
||||
|
||||
# Reads a bit from this stream. Returns 0 or 1 if a bit is available, or -1 if
|
||||
# the end of stream is reached. The end of stream always occurs on a byte boundary.
|
||||
def read(self):
|
||||
if self.currentbyte == -1:
|
||||
return -1
|
||||
if self.numbitsremaining == 0:
|
||||
temp = self.input.read(1)
|
||||
if len(temp) == 0:
|
||||
self.currentbyte = -1
|
||||
return -1
|
||||
self.currentbyte = temp[0]
|
||||
self.numbitsremaining = 8
|
||||
assert self.numbitsremaining > 0
|
||||
self.numbitsremaining -= 1
|
||||
return (self.currentbyte >> self.numbitsremaining) & 1
|
||||
|
||||
|
||||
# Reads a bit from this stream. Returns 0 or 1 if a bit is available, or raises an EOFError
|
||||
# if the end of stream is reached. The end of stream always occurs on a byte boundary.
|
||||
def read_no_eof(self):
|
||||
result = self.read()
|
||||
if result != -1:
|
||||
return result
|
||||
else:
|
||||
raise EOFError()
|
||||
|
||||
|
||||
# Closes this stream and the underlying input stream.
|
||||
def close(self):
|
||||
self.input.close()
|
||||
self.currentbyte = -1
|
||||
self.numbitsremaining = 0
|
||||
|
||||
|
||||
|
||||
# A stream where bits can be written to. Because they are written to an underlying
|
||||
# byte stream, the end of the stream is padded with 0's up to a multiple of 8 bits.
|
||||
# The bits are written in big endian.
|
||||
class BitOutputStream:
|
||||
|
||||
# Constructs a bit output stream based on the given byte output stream.
|
||||
def __init__(self, out):
|
||||
self.output = out # The underlying byte stream to write to
|
||||
self.currentbyte = 0 # The accumulated bits for the current byte, always in the range [0x00, 0xFF]
|
||||
self.numbitsfilled = 0 # Number of accumulated bits in the current byte, always between 0 and 7 (inclusive)
|
||||
|
||||
|
||||
# Writes a bit to the stream. The given bit must be 0 or 1.
|
||||
def write(self, b):
|
||||
if b not in (0, 1):
|
||||
raise ValueError("Argument must be 0 or 1")
|
||||
self.currentbyte = (self.currentbyte << 1) | b
|
||||
self.numbitsfilled += 1
|
||||
if self.numbitsfilled == 8:
|
||||
towrite = bytes((self.currentbyte,))
|
||||
self.output.write(towrite)
|
||||
self.currentbyte = 0
|
||||
self.numbitsfilled = 0
|
||||
|
||||
|
||||
# Closes this stream and the underlying output stream. If called when this
|
||||
# bit stream is not at a byte boundary, then the minimum number of "0" bits
|
||||
# (between 0 and 7 of them) are written as padding to reach the next byte boundary.
|
||||
def close(self):
|
||||
while self.numbitsfilled != 0:
|
||||
self.write(0)
|
||||
self.output.close()
|
||||
Reference in a new issue