code cleanup
This commit is contained in:
parent
ea9cf12db0
commit
73d1742cbd
44 changed files with 6 additions and 2835 deletions
26
trainers/FullTrainer.py
Normal file
26
trainers/FullTrainer.py
Normal file
|
|
@ -0,0 +1,26 @@
|
|||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from .trainer import Trainer
|
||||
from .train import train
|
||||
from ..utils import print_losses
|
||||
|
||||
class FullTrainer(Trainer):
|
||||
def execute(
|
||||
self,
|
||||
model: nn.Module | None,
|
||||
train_loader: DataLoader,
|
||||
validation_loader: DataLoader,
|
||||
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
n_epochs: int,
|
||||
device: str
|
||||
) -> None:
|
||||
if model is None:
|
||||
raise ValueError("Model must be provided: run optuna optimizations first")
|
||||
|
||||
model.to(device)
|
||||
train_loss, val_loss = train(model, train_loader, validation_loader, loss_fn, n_epochs)
|
||||
print_losses(train_loss, val_loss)
|
||||
57
trainers/OptunaTrainer.py
Normal file
57
trainers/OptunaTrainer.py
Normal file
|
|
@ -0,0 +1,57 @@
|
|||
from typing import Callable
|
||||
|
||||
import optuna
|
||||
import optuna.trial as tr
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from .trainer import Trainer
|
||||
from ..models.cnn import CNNPredictor
|
||||
from .train import train
|
||||
|
||||
|
||||
def create_model(trial: tr.Trial, vocab_size: int = 256):
|
||||
hidden_dim = trial.suggest_int("hidden_dim", 64, 512, log=True)
|
||||
embedding_dim = trial.suggest_int("embed_dim", 64, 512, log=True)
|
||||
|
||||
return CNNPredictor(
|
||||
vocab_size=vocab_size,
|
||||
hidden_dim=hidden_dim,
|
||||
embed_dim=embedding_dim,
|
||||
)
|
||||
|
||||
|
||||
def objective_function(
|
||||
trial: tr.Trial,
|
||||
training_loader: DataLoader,
|
||||
validation_loader: DataLoader,
|
||||
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
device: str
|
||||
):
|
||||
model = create_model(trial).to(device)
|
||||
_, validation_loss = train(model, training_loader, validation_loader, loss_fn)
|
||||
return min(validation_loss)
|
||||
|
||||
|
||||
class OptunaTrainer(Trainer):
|
||||
def execute(
|
||||
self,
|
||||
model: nn.Module | None,
|
||||
train_loader: DataLoader,
|
||||
validation_loader: DataLoader,
|
||||
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
n_epochs: int,
|
||||
device: str
|
||||
) -> None:
|
||||
study = optuna.create_study(study_name="CNN network", direction="minimize")
|
||||
study.optimize(
|
||||
lambda trial: objective_function(trial, train_loader, validation_loader, loss_fn, device),
|
||||
n_trials=20
|
||||
)
|
||||
|
||||
best_params = study.best_trial.params
|
||||
best_model = CNNPredictor(
|
||||
**best_params
|
||||
)
|
||||
torch.save(best_model, f"saved_models/{model.__class__.__name__}.pt")
|
||||
3
trainers/__init__.py
Normal file
3
trainers/__init__.py
Normal file
|
|
@ -0,0 +1,3 @@
|
|||
from .OptunaTrainer import OptunaTrainer
|
||||
from .FullTrainer import FullTrainer
|
||||
from .trainer import Trainer
|
||||
59
trainers/train.py
Normal file
59
trainers/train.py
Normal file
|
|
@ -0,0 +1,59 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data.dataloader import DataLoader
|
||||
from tqdm import tqdm
|
||||
from typing import Callable
|
||||
|
||||
|
||||
def train(
|
||||
model: nn.Module,
|
||||
training_loader: DataLoader,
|
||||
validation_loader: DataLoader,
|
||||
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
epochs: int = 100,
|
||||
learning_rate: float = 1e-3,
|
||||
weight_decay: float = 1e-8,
|
||||
device="cuda"
|
||||
) -> tuple[list[float], list[float]]:
|
||||
|
||||
model.to(device)
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
||||
|
||||
avg_training_losses = []
|
||||
avg_validation_losses = []
|
||||
|
||||
for epoch in range(epochs):
|
||||
|
||||
model.train()
|
||||
total_loss = []
|
||||
|
||||
for x, y in tqdm(training_loader):
|
||||
x = x.long().to(device) # important for Embedding
|
||||
y = y.long().to(device) # must be (B,) for CE
|
||||
|
||||
optimizer.zero_grad()
|
||||
logits = model(x) # (B, 256)
|
||||
loss = loss_fn(logits, y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
total_loss.append(loss.item())
|
||||
|
||||
avg_training_losses.append(sum(total_loss) / len(total_loss))
|
||||
|
||||
# ----- validation -----
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
losses = []
|
||||
for x, y in validation_loader:
|
||||
x = x.long().to(device)
|
||||
y = y.long().to(device)
|
||||
|
||||
logits = model(x)
|
||||
loss = loss_fn(logits, y)
|
||||
losses.append(loss.item())
|
||||
|
||||
avg_loss = sum(losses) / len(losses)
|
||||
avg_validation_losses.append(avg_loss)
|
||||
|
||||
return avg_training_losses, avg_validation_losses
|
||||
22
trainers/trainer.py
Normal file
22
trainers/trainer.py
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class Trainer(ABC):
|
||||
"""Abstract class for trainers."""
|
||||
|
||||
@abstractmethod
|
||||
def execute(
|
||||
self,
|
||||
model: nn.Module | None,
|
||||
train_loader: DataLoader,
|
||||
validation_loader: DataLoader,
|
||||
loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
n_epochs: int,
|
||||
device: str
|
||||
) -> None:
|
||||
pass
|
||||
Reference in a new issue