code cleanup
This commit is contained in:
parent
ea9cf12db0
commit
73d1742cbd
44 changed files with 6 additions and 2835 deletions
26
dataset_loaders/Dataset.py
Normal file
26
dataset_loaders/Dataset.py
Normal file
|
|
@ -0,0 +1,26 @@
|
|||
from abc import abstractmethod, ABC
|
||||
from os.path import join, curdir
|
||||
from typing import Callable
|
||||
|
||||
from torch.utils.data import Dataset as TorchDataset
|
||||
|
||||
"""
|
||||
Author: Tibo De Peuter
|
||||
"""
|
||||
class Dataset(TorchDataset, ABC):
|
||||
"""Abstract base class for datasets."""
|
||||
@abstractmethod
|
||||
def __init__(self, root: str, transform: Callable = None):
|
||||
"""
|
||||
:param root: Relative path to the dataset root directory
|
||||
"""
|
||||
self._root: str = join(curdir, 'data', root)
|
||||
self.transform = transform
|
||||
self.dataset = None
|
||||
|
||||
@property
|
||||
def root(self):
|
||||
return self._root
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
43
dataset_loaders/EnWik9.py
Normal file
43
dataset_loaders/EnWik9.py
Normal file
|
|
@ -0,0 +1,43 @@
|
|||
from datasets import load_dataset
|
||||
from torch.utils.data import Dataset
|
||||
import torch
|
||||
from os.path import curdir, join
|
||||
from typing import Callable
|
||||
|
||||
|
||||
class EnWik9DataSet(Dataset):
|
||||
def __init__(self, root: str = "data", transform: Callable | None = None):
|
||||
super().__init__()
|
||||
self.transform = transform
|
||||
|
||||
# HuggingFace dataset: string text
|
||||
path = join(curdir, root)
|
||||
data = load_dataset("haukur/enwik9", cache_dir=path, split="train")
|
||||
|
||||
# Extract raw text
|
||||
text = data["text"]
|
||||
|
||||
# Convert text (Python string) → bytes → tensor of ints 0–255
|
||||
# UTF-8 but non-ASCII bytes may exceed 255, so enforce modulo or ignore errors
|
||||
byte_data = "".join(text).encode("utf-8", errors="replace")
|
||||
self.data = torch.tensor(list(byte_data), dtype=torch.long)
|
||||
|
||||
# Model uses fixed 128-length context
|
||||
self.context_length = 128
|
||||
|
||||
def __len__(self):
|
||||
# number of sliding windows
|
||||
return len(self.data) - self.context_length
|
||||
|
||||
def __getitem__(self, idx):
|
||||
# context window
|
||||
x = self.data[idx : idx + self.context_length]
|
||||
|
||||
# next byte target
|
||||
y = self.data[idx + self.context_length]
|
||||
|
||||
if self.transform:
|
||||
x = self.transform(x)
|
||||
|
||||
return x, y
|
||||
|
||||
34
dataset_loaders/LoremIpsumDataset.py
Normal file
34
dataset_loaders/LoremIpsumDataset.py
Normal file
|
|
@ -0,0 +1,34 @@
|
|||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from os.path import curdir, join
|
||||
from lorem.text import TextLorem
|
||||
from .Dataset import Dataset
|
||||
|
||||
|
||||
class LoremIpsumDataset(Dataset):
|
||||
def __init__(self, root: str = "data", transform: Callable = None):
|
||||
super().__init__(root, transform)
|
||||
|
||||
# Generate text and convert to bytes
|
||||
_lorem = TextLorem()
|
||||
_text = ' '.join(_lorem._word() for _ in range(512))
|
||||
|
||||
path = join(curdir, "data")
|
||||
self._root = path
|
||||
# Convert text to bytes (UTF-8 encoded)
|
||||
self.dataset = torch.tensor([ord(c) % 256 for c in list(_text)], dtype=torch.long)
|
||||
self.context_length = 128
|
||||
|
||||
def __len__(self):
|
||||
# Number of possible sequences of length sequence_length
|
||||
return self.dataset.size(0) - self.context_length
|
||||
|
||||
def __getitem__(self, idx):
|
||||
x = self.dataset[idx: idx + self.context_length]
|
||||
y = self.dataset[idx + self.context_length]
|
||||
|
||||
if self.transform is not None:
|
||||
x = self.transform(x)
|
||||
|
||||
return x, y
|
||||
3
dataset_loaders/__init__.py
Normal file
3
dataset_loaders/__init__.py
Normal file
|
|
@ -0,0 +1,3 @@
|
|||
from .EnWik9 import EnWik9DataSet
|
||||
from .LoremIpsumDataset import LoremIpsumDataset
|
||||
from .Dataset import Dataset
|
||||
Reference in a new issue