feat: i think i set up the encoder
This commit is contained in:
parent
947aba31ee
commit
63d1b6f5ae
2 changed files with 51 additions and 6 deletions
|
|
@ -3,7 +3,7 @@ from torch.utils.data import TensorDataset
|
|||
|
||||
|
||||
def make_context_pairs(data: bytes, context_length: int) -> TensorDataset:
|
||||
data = torch.tensor(data, dtype=torch.uint8)
|
||||
data = torch.tensor(list(data), dtype=torch.uint8)
|
||||
sample_count = data.shape[0] - context_length
|
||||
x = data.unfold(0, context_length, 1)[:sample_count]
|
||||
y = data[context_length:]
|
||||
|
|
|
|||
|
|
@ -1,11 +1,13 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.functional as F
|
||||
import torch.nn.functional as F
|
||||
import optuna.trial as tr
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
from optuna_trial import create_model
|
||||
from data_utils import make_context_pairs
|
||||
import optuna
|
||||
|
||||
# hyper parameters
|
||||
context_length = 128
|
||||
|
|
@ -18,18 +20,61 @@ def train_and_eval(
|
|||
epochs: int = 100,
|
||||
learning_rate: float = 1e-3,
|
||||
device: torch.device = torch.device("cpu")
|
||||
):
|
||||
) -> dict:
|
||||
model.to(device)
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
||||
training_loader = DataLoader(make_context_pairs(training_data, context_length=context_length))
|
||||
validation_loader= DataLoader(make_context_pairs(validation_data, context_length=context_length))
|
||||
training_loader = DataLoader(make_context_pairs(training_data, context_length=context_length), batch_size=batch_size)
|
||||
validation_loader= DataLoader(make_context_pairs(validation_data, context_length=context_length), batch_size=batch_size)
|
||||
|
||||
training_losses = []
|
||||
validation_losses = []
|
||||
best_val_loss = float("inf")
|
||||
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
train_loss = 0
|
||||
for x, y in tqdm(training_loader, desc=f"Epoch {epoch}"):
|
||||
x, y = x.to(device), y.to(device)
|
||||
prediction = model(x)
|
||||
loss = F.cross_entropy(prediction, y)
|
||||
train_loss += loss.item()
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
training_losses.append(train_loss / len(training_loader))
|
||||
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
val_loss = 0
|
||||
for x, y in validation_loader:
|
||||
x, y = x.to(device), y.to(device)
|
||||
prediction = model(x)
|
||||
loss = F.cross_entropy(prediction, y)
|
||||
val_loss += loss.item()
|
||||
validation_losses.append(val_loss / len(validation_loader))
|
||||
if validation_losses[-1] < best_val_loss:
|
||||
best_val_loss = validation_losses[-1]
|
||||
|
||||
return {
|
||||
"training_losses": training_losses,
|
||||
"validation_losses": validation_losses,
|
||||
"best_validation_loss": best_val_loss
|
||||
}
|
||||
|
||||
|
||||
def objective_function(trial: tr.Trial):
|
||||
|
||||
def objective_function(trial: tr.Trial, train_data: bytes, validation_data: bytes, batch_size: int):
|
||||
model = create_model(trial)
|
||||
result = train_and_eval(model, train_data, validation_data, batch_size)
|
||||
return result["best_validation_loss"]
|
||||
|
||||
if __name__ == "__main__":
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
train_data = b""
|
||||
validation_data = b""
|
||||
batch_size = 0
|
||||
|
||||
study = optuna.create_study(study_name="CNN network",direction="minimize")
|
||||
study.optimize(lambda trial: objective_function(trial, train_data, validation_data, batch_size), n_trials=10)
|
||||
Reference in a new issue