feat: autoencoder + updated trainers + cleaned up process to allow using autoencoder

This commit is contained in:
RobinMeersman 2025-12-14 14:37:04 +01:00
parent 0ab495165f
commit 17e0b52600
11 changed files with 132 additions and 211 deletions

View file

@ -1,10 +1,8 @@
from .Model import Model
from .autoencoder import AutoEncoder
from .cnn import CNNPredictor
from .transformer import ByteTransformer
model_called: dict[str, type[Model]] = {
'cnn': CNNPredictor,
'transformer': ByteTransformer,
'autoencoder': AutoEncoder
}

View file

@ -47,9 +47,15 @@ class AutoEncoder(Model):
self.decoder = Decoder(latent_dim, channel_count, input_size)
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""
x: torch.Tensor of floats
"""
return self.encoder(x)
def decode(self, x: torch.Tensor) -> torch.Tensor:
"""
x: torch.Tensor of floats
"""
return self.decoder(x)
def forward(self, x: torch.LongTensor) -> torch.Tensor:

View file

@ -1 +0,0 @@
from .transformer import ByteTransformer

View file

@ -1,70 +0,0 @@
from typing import Optional
import torch.nn as nn
from torch import Tensor, arange
from src.models import Model
class LearnedPositionalEncoding(Model):
def __init__(self, max_len, d_model):
super().__init__()
self.pos_emb = nn.Embedding(max_len, d_model)
def forward(self, x):
# x: [seq, batch, d_model]
seq_len = x.size(0)
positions = arange(seq_len, device=x.device).unsqueeze(1) # [seq, 1]
return x + self.pos_emb(positions) # broadcast over batch
class ByteTransformer(nn.Module):
def __init__(
self,
d_model=512,
nhead=8,
num_encoder_layers=6,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
layer_norm_eps=1e-05,
max_len=128
):
super().__init__()
self.src_embedding = nn.Embedding(256, d_model)
self.tgt_embedding = nn.Embedding(256, d_model)
self.src_pos = LearnedPositionalEncoding(max_len, d_model)
self.tgt_pos = LearnedPositionalEncoding(max_len, d_model)
self.transformer = nn.Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_feedforward,
dropout=dropout,
activation=activation,
layer_norm_eps=layer_norm_eps,
batch_first=False,
norm_first=False,
device=None,
dtype=None,
)
self.output_proj = nn.Linear(d_model, 256)
self.loss_function = nn.CrossEntropyLoss()
def forward(
self,
src: Tensor,
tgt: Tensor,
) -> Tensor:
src_embeds = self.src_embedding(src)
tgt_embeds = self.tgt_embedding(tgt)
src_pos = self.src_pos(src_embeds)
tgt_pos = self.tgt_pos(tgt_embeds)
return self.output_proj(self.transformer(src_pos, tgt_pos))