chore(transformer-xl): Initial commit
This commit is contained in:
parent
ef4684ef39
commit
10512876f2
46 changed files with 10547 additions and 0 deletions
812
transformer-xl/pytorch/mem_transformer.py
Normal file
812
transformer-xl/pytorch/mem_transformer.py
Normal file
|
|
@ -0,0 +1,812 @@
|
|||
import sys
|
||||
import math
|
||||
import functools
|
||||
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
sys.path.append('utils')
|
||||
from proj_adaptive_softmax import ProjectedAdaptiveLogSoftmax
|
||||
from log_uniform_sampler import LogUniformSampler, sample_logits
|
||||
|
||||
class PositionalEmbedding(nn.Module):
|
||||
def __init__(self, demb):
|
||||
super(PositionalEmbedding, self).__init__()
|
||||
|
||||
self.demb = demb
|
||||
|
||||
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
|
||||
self.register_buffer('inv_freq', inv_freq)
|
||||
|
||||
def forward(self, pos_seq, bsz=None):
|
||||
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
|
||||
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
|
||||
|
||||
if bsz is not None:
|
||||
return pos_emb[:,None,:].expand(-1, bsz, -1)
|
||||
else:
|
||||
return pos_emb[:,None,:]
|
||||
|
||||
|
||||
class PositionwiseFF(nn.Module):
|
||||
def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
|
||||
super(PositionwiseFF, self).__init__()
|
||||
|
||||
self.d_model = d_model
|
||||
self.d_inner = d_inner
|
||||
self.dropout = dropout
|
||||
|
||||
self.CoreNet = nn.Sequential(
|
||||
nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(d_inner, d_model),
|
||||
nn.Dropout(dropout),
|
||||
)
|
||||
|
||||
self.layer_norm = nn.LayerNorm(d_model)
|
||||
|
||||
self.pre_lnorm = pre_lnorm
|
||||
|
||||
def forward(self, inp):
|
||||
if self.pre_lnorm:
|
||||
##### layer normalization + positionwise feed-forward
|
||||
core_out = self.CoreNet(self.layer_norm(inp))
|
||||
|
||||
##### residual connection
|
||||
output = core_out + inp
|
||||
else:
|
||||
##### positionwise feed-forward
|
||||
core_out = self.CoreNet(inp)
|
||||
|
||||
##### residual connection + layer normalization
|
||||
output = self.layer_norm(inp + core_out)
|
||||
|
||||
return output
|
||||
|
||||
class MultiHeadAttn(nn.Module):
|
||||
def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
|
||||
pre_lnorm=False):
|
||||
super(MultiHeadAttn, self).__init__()
|
||||
|
||||
self.n_head = n_head
|
||||
self.d_model = d_model
|
||||
self.d_head = d_head
|
||||
self.dropout = dropout
|
||||
|
||||
self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
|
||||
self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)
|
||||
|
||||
self.drop = nn.Dropout(dropout)
|
||||
self.dropatt = nn.Dropout(dropatt)
|
||||
self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)
|
||||
|
||||
self.layer_norm = nn.LayerNorm(d_model)
|
||||
|
||||
self.scale = 1 / (d_head ** 0.5)
|
||||
|
||||
self.pre_lnorm = pre_lnorm
|
||||
|
||||
def forward(self, h, attn_mask=None, mems=None):
|
||||
##### multihead attention
|
||||
# [hlen x bsz x n_head x d_head]
|
||||
|
||||
if mems is not None:
|
||||
c = torch.cat([mems, h], 0)
|
||||
else:
|
||||
c = h
|
||||
|
||||
if self.pre_lnorm:
|
||||
##### layer normalization
|
||||
c = self.layer_norm(c)
|
||||
|
||||
head_q = self.q_net(h)
|
||||
head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)
|
||||
|
||||
head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
|
||||
head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
|
||||
head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)
|
||||
|
||||
# [qlen x klen x bsz x n_head]
|
||||
attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
|
||||
attn_score.mul_(self.scale)
|
||||
if attn_mask is not None and attn_mask.any().item():
|
||||
if attn_mask.dim() == 2:
|
||||
attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
|
||||
elif attn_mask.dim() == 3:
|
||||
attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))
|
||||
|
||||
# [qlen x klen x bsz x n_head]
|
||||
attn_prob = F.softmax(attn_score, dim=1)
|
||||
attn_prob = self.dropatt(attn_prob)
|
||||
|
||||
# [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
|
||||
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
|
||||
attn_vec = attn_vec.contiguous().view(
|
||||
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
|
||||
|
||||
##### linear projection
|
||||
attn_out = self.o_net(attn_vec)
|
||||
attn_out = self.drop(attn_out)
|
||||
|
||||
if self.pre_lnorm:
|
||||
##### residual connection
|
||||
output = h + attn_out
|
||||
else:
|
||||
##### residual connection + layer normalization
|
||||
output = self.layer_norm(h + attn_out)
|
||||
|
||||
return output
|
||||
|
||||
class RelMultiHeadAttn(nn.Module):
|
||||
def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
|
||||
tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False):
|
||||
super(RelMultiHeadAttn, self).__init__()
|
||||
|
||||
self.n_head = n_head
|
||||
self.d_model = d_model
|
||||
self.d_head = d_head
|
||||
self.dropout = dropout
|
||||
|
||||
self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)
|
||||
|
||||
self.drop = nn.Dropout(dropout)
|
||||
self.dropatt = nn.Dropout(dropatt)
|
||||
self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)
|
||||
|
||||
self.layer_norm = nn.LayerNorm(d_model)
|
||||
|
||||
self.scale = 1 / (d_head ** 0.5)
|
||||
|
||||
self.pre_lnorm = pre_lnorm
|
||||
|
||||
def _parallelogram_mask(self, h, w, left=False):
|
||||
mask = torch.ones((h, w)).byte()
|
||||
m = min(h, w)
|
||||
mask[:m,:m] = torch.triu(mask[:m,:m])
|
||||
mask[-m:,-m:] = torch.tril(mask[-m:,-m:])
|
||||
|
||||
if left:
|
||||
return mask
|
||||
else:
|
||||
return mask.flip(0)
|
||||
|
||||
def _shift(self, x, qlen, klen, mask, left=False):
|
||||
if qlen > 1:
|
||||
zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
|
||||
device=x.device, dtype=x.dtype)
|
||||
else:
|
||||
zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)
|
||||
|
||||
if left:
|
||||
mask = mask.flip(1)
|
||||
x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
|
||||
else:
|
||||
x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)
|
||||
|
||||
x = x_padded.masked_select(mask[:,:,None,None]) \
|
||||
.view(qlen, klen, x.size(2), x.size(3))
|
||||
|
||||
return x
|
||||
|
||||
def _rel_shift(self, x, zero_triu=False):
|
||||
zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]),
|
||||
device=x.device, dtype=x.dtype)
|
||||
x_padded = torch.cat([zero_pad, x], dim=1)
|
||||
|
||||
x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:])
|
||||
|
||||
x = x_padded[1:].view_as(x)
|
||||
|
||||
if zero_triu:
|
||||
ones = torch.ones((x.size(0), x.size(1)))
|
||||
x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, w, r, attn_mask=None, mems=None):
|
||||
raise NotImplementedError
|
||||
|
||||
class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)
|
||||
|
||||
self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)
|
||||
|
||||
def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None):
|
||||
qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)
|
||||
|
||||
if mems is not None:
|
||||
cat = torch.cat([mems, w], 0)
|
||||
if self.pre_lnorm:
|
||||
w_heads = self.qkv_net(self.layer_norm(cat))
|
||||
else:
|
||||
w_heads = self.qkv_net(cat)
|
||||
r_head_k = self.r_net(r)
|
||||
|
||||
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
|
||||
w_head_q = w_head_q[-qlen:]
|
||||
else:
|
||||
if self.pre_lnorm:
|
||||
w_heads = self.qkv_net(self.layer_norm(w))
|
||||
else:
|
||||
w_heads = self.qkv_net(w)
|
||||
r_head_k = self.r_net(r)
|
||||
|
||||
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
|
||||
|
||||
klen = w_head_k.size(0)
|
||||
|
||||
w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
|
||||
w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
|
||||
w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
|
||||
|
||||
r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head
|
||||
|
||||
#### compute attention score
|
||||
rw_head_q = w_head_q + r_w_bias # qlen x bsz x n_head x d_head
|
||||
AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head
|
||||
|
||||
rr_head_q = w_head_q + r_r_bias
|
||||
BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head
|
||||
BD = self._rel_shift(BD)
|
||||
|
||||
# [qlen x klen x bsz x n_head]
|
||||
attn_score = AC + BD
|
||||
attn_score.mul_(self.scale)
|
||||
|
||||
#### compute attention probability
|
||||
if attn_mask is not None and attn_mask.any().item():
|
||||
if attn_mask.dim() == 2:
|
||||
attn_score = attn_score.float().masked_fill(
|
||||
attn_mask[None,:,:,None], -float('inf')).type_as(attn_score)
|
||||
elif attn_mask.dim() == 3:
|
||||
attn_score = attn_score.float().masked_fill(
|
||||
attn_mask[:,:,:,None], -float('inf')).type_as(attn_score)
|
||||
|
||||
# [qlen x klen x bsz x n_head]
|
||||
attn_prob = F.softmax(attn_score, dim=1)
|
||||
attn_prob = self.dropatt(attn_prob)
|
||||
|
||||
#### compute attention vector
|
||||
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))
|
||||
|
||||
# [qlen x bsz x n_head x d_head]
|
||||
attn_vec = attn_vec.contiguous().view(
|
||||
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
|
||||
|
||||
##### linear projection
|
||||
attn_out = self.o_net(attn_vec)
|
||||
attn_out = self.drop(attn_out)
|
||||
|
||||
if self.pre_lnorm:
|
||||
##### residual connection
|
||||
output = w + attn_out
|
||||
else:
|
||||
##### residual connection + layer normalization
|
||||
output = self.layer_norm(w + attn_out)
|
||||
|
||||
return output
|
||||
|
||||
class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)
|
||||
|
||||
def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None):
|
||||
# r_emb: [klen, n_head, d_head], used for term B
|
||||
# r_w_bias: [n_head, d_head], used for term C
|
||||
# r_bias: [klen, n_head], used for term D
|
||||
|
||||
qlen, bsz = w.size(0), w.size(1)
|
||||
|
||||
if mems is not None:
|
||||
cat = torch.cat([mems, w], 0)
|
||||
if self.pre_lnorm:
|
||||
w_heads = self.qkv_net(self.layer_norm(cat))
|
||||
else:
|
||||
w_heads = self.qkv_net(cat)
|
||||
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
|
||||
|
||||
w_head_q = w_head_q[-qlen:]
|
||||
else:
|
||||
if self.pre_lnorm:
|
||||
w_heads = self.qkv_net(self.layer_norm(w))
|
||||
else:
|
||||
w_heads = self.qkv_net(w)
|
||||
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
|
||||
|
||||
klen = w_head_k.size(0)
|
||||
|
||||
w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
|
||||
w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
|
||||
w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)
|
||||
|
||||
if klen > r_emb.size(0):
|
||||
r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
|
||||
r_emb = torch.cat([r_emb_pad, r_emb], 0)
|
||||
r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
|
||||
r_bias = torch.cat([r_bias_pad, r_bias], 0)
|
||||
else:
|
||||
r_emb = r_emb[-klen:]
|
||||
r_bias = r_bias[-klen:]
|
||||
|
||||
#### compute attention score
|
||||
rw_head_q = w_head_q + r_w_bias[None] # qlen x bsz x n_head x d_head
|
||||
|
||||
AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head
|
||||
B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb)) # qlen x klen x bsz x n_head
|
||||
D_ = r_bias[None, :, None] # 1 x klen x 1 x n_head
|
||||
BD = self._rel_shift(B_ + D_)
|
||||
|
||||
# [qlen x klen x bsz x n_head]
|
||||
attn_score = AC + BD
|
||||
attn_score.mul_(self.scale)
|
||||
|
||||
#### compute attention probability
|
||||
if attn_mask is not None and attn_mask.any().item():
|
||||
if attn_mask.dim() == 2:
|
||||
attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
|
||||
elif attn_mask.dim() == 3:
|
||||
attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))
|
||||
|
||||
# [qlen x klen x bsz x n_head]
|
||||
attn_prob = F.softmax(attn_score, dim=1)
|
||||
attn_prob = self.dropatt(attn_prob)
|
||||
|
||||
#### compute attention vector
|
||||
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))
|
||||
|
||||
# [qlen x bsz x n_head x d_head]
|
||||
attn_vec = attn_vec.contiguous().view(
|
||||
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
|
||||
|
||||
##### linear projection
|
||||
attn_out = self.o_net(attn_vec)
|
||||
attn_out = self.drop(attn_out)
|
||||
|
||||
if self.pre_lnorm:
|
||||
##### residual connection
|
||||
output = w + attn_out
|
||||
else:
|
||||
##### residual connection + layer normalization
|
||||
output = self.layer_norm(w + attn_out)
|
||||
|
||||
return output
|
||||
|
||||
class DecoderLayer(nn.Module):
|
||||
def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
|
||||
super(DecoderLayer, self).__init__()
|
||||
|
||||
self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
|
||||
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
|
||||
pre_lnorm=kwargs.get('pre_lnorm'))
|
||||
|
||||
def forward(self, dec_inp, dec_attn_mask=None, mems=None):
|
||||
|
||||
output = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
|
||||
mems=mems)
|
||||
output = self.pos_ff(output)
|
||||
|
||||
return output
|
||||
|
||||
class RelLearnableDecoderLayer(nn.Module):
|
||||
def __init__(self, n_head, d_model, d_head, d_inner, dropout,
|
||||
**kwargs):
|
||||
super(RelLearnableDecoderLayer, self).__init__()
|
||||
|
||||
self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
|
||||
**kwargs)
|
||||
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
|
||||
pre_lnorm=kwargs.get('pre_lnorm'))
|
||||
|
||||
def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None):
|
||||
|
||||
output = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
|
||||
attn_mask=dec_attn_mask,
|
||||
mems=mems)
|
||||
output = self.pos_ff(output)
|
||||
|
||||
return output
|
||||
|
||||
class RelPartialLearnableDecoderLayer(nn.Module):
|
||||
def __init__(self, n_head, d_model, d_head, d_inner, dropout,
|
||||
**kwargs):
|
||||
super(RelPartialLearnableDecoderLayer, self).__init__()
|
||||
|
||||
self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
|
||||
d_head, dropout, **kwargs)
|
||||
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
|
||||
pre_lnorm=kwargs.get('pre_lnorm'))
|
||||
|
||||
def forward(self, dec_inp, r, r_w_bias, r_r_bias, dec_attn_mask=None, mems=None):
|
||||
|
||||
output = self.dec_attn(dec_inp, r, r_w_bias, r_r_bias,
|
||||
attn_mask=dec_attn_mask,
|
||||
mems=mems)
|
||||
output = self.pos_ff(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class AdaptiveEmbedding(nn.Module):
|
||||
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
|
||||
sample_softmax=False):
|
||||
super(AdaptiveEmbedding, self).__init__()
|
||||
|
||||
self.n_token = n_token
|
||||
self.d_embed = d_embed
|
||||
|
||||
self.cutoffs = cutoffs + [n_token]
|
||||
self.div_val = div_val
|
||||
self.d_proj = d_proj
|
||||
|
||||
self.emb_scale = d_proj ** 0.5
|
||||
|
||||
self.cutoff_ends = [0] + self.cutoffs
|
||||
|
||||
self.emb_layers = nn.ModuleList()
|
||||
self.emb_projs = nn.ParameterList()
|
||||
if div_val == 1:
|
||||
self.emb_layers.append(
|
||||
nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
|
||||
)
|
||||
if d_proj != d_embed:
|
||||
self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed)))
|
||||
else:
|
||||
for i in range(len(self.cutoffs)):
|
||||
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
|
||||
d_emb_i = d_embed // (div_val ** i)
|
||||
self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
|
||||
self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_emb_i)))
|
||||
|
||||
def forward(self, inp):
|
||||
if self.div_val == 1:
|
||||
embed = self.emb_layers[0](inp)
|
||||
if self.d_proj != self.d_embed:
|
||||
embed = F.linear(embed, self.emb_projs[0])
|
||||
else:
|
||||
param = next(self.parameters())
|
||||
inp_flat = inp.view(-1)
|
||||
emb_flat = torch.zeros([inp_flat.size(0), self.d_proj],
|
||||
dtype=param.dtype, device=param.device)
|
||||
for i in range(len(self.cutoffs)):
|
||||
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
||||
|
||||
mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
|
||||
indices_i = mask_i.nonzero().squeeze()
|
||||
|
||||
if indices_i.numel() == 0:
|
||||
continue
|
||||
|
||||
inp_i = inp_flat.index_select(0, indices_i) - l_idx
|
||||
emb_i = self.emb_layers[i](inp_i)
|
||||
emb_i = F.linear(emb_i, self.emb_projs[i])
|
||||
|
||||
emb_flat.index_copy_(0, indices_i, emb_i)
|
||||
|
||||
embed = emb_flat.view(*inp.size(), self.d_proj)
|
||||
|
||||
embed.mul_(self.emb_scale)
|
||||
|
||||
return embed
|
||||
|
||||
class MemTransformerLM(nn.Module):
|
||||
def __init__(self, n_token, n_layer, n_head, d_model, d_head, d_inner,
|
||||
dropout, dropatt, tie_weight=True, d_embed=None,
|
||||
div_val=1, tie_projs=[False], pre_lnorm=False,
|
||||
tgt_len=None, ext_len=None, mem_len=None,
|
||||
cutoffs=[], adapt_inp=False,
|
||||
same_length=False, attn_type=0, clamp_len=-1,
|
||||
sample_softmax=-1):
|
||||
super(MemTransformerLM, self).__init__()
|
||||
self.n_token = n_token
|
||||
|
||||
d_embed = d_model if d_embed is None else d_embed
|
||||
self.d_embed = d_embed
|
||||
self.d_model = d_model
|
||||
self.n_head = n_head
|
||||
self.d_head = d_head
|
||||
|
||||
self.word_emb = AdaptiveEmbedding(n_token, d_embed, d_model, cutoffs,
|
||||
div_val=div_val)
|
||||
|
||||
self.drop = nn.Dropout(dropout)
|
||||
|
||||
self.n_layer = n_layer
|
||||
|
||||
self.tgt_len = tgt_len
|
||||
self.mem_len = mem_len
|
||||
self.ext_len = ext_len
|
||||
self.max_klen = tgt_len + ext_len + mem_len
|
||||
|
||||
self.attn_type = attn_type
|
||||
|
||||
self.layers = nn.ModuleList()
|
||||
if attn_type == 0: # the default attention
|
||||
for i in range(n_layer):
|
||||
self.layers.append(
|
||||
RelPartialLearnableDecoderLayer(
|
||||
n_head, d_model, d_head, d_inner, dropout,
|
||||
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
|
||||
dropatt=dropatt, pre_lnorm=pre_lnorm)
|
||||
)
|
||||
elif attn_type == 1: # learnable embeddings
|
||||
for i in range(n_layer):
|
||||
self.layers.append(
|
||||
RelLearnableDecoderLayer(
|
||||
n_head, d_model, d_head, d_inner, dropout,
|
||||
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
|
||||
dropatt=dropatt, pre_lnorm=pre_lnorm)
|
||||
)
|
||||
elif attn_type in [2, 3]: # absolute embeddings
|
||||
for i in range(n_layer):
|
||||
self.layers.append(
|
||||
DecoderLayer(
|
||||
n_head, d_model, d_head, d_inner, dropout,
|
||||
dropatt=dropatt, pre_lnorm=pre_lnorm)
|
||||
)
|
||||
|
||||
self.sample_softmax = sample_softmax
|
||||
# use sampled softmax
|
||||
if sample_softmax > 0:
|
||||
self.out_layer = nn.Linear(d_model, n_token)
|
||||
if tie_weight:
|
||||
self.out_layer.weight = self.word_emb.weight
|
||||
self.tie_weight = tie_weight
|
||||
self.sampler = LogUniformSampler(n_token, sample_softmax)
|
||||
|
||||
# use adaptive softmax (including standard softmax)
|
||||
else:
|
||||
self.crit = ProjectedAdaptiveLogSoftmax(n_token, d_embed, d_model,
|
||||
cutoffs, div_val=div_val)
|
||||
|
||||
if tie_weight:
|
||||
for i in range(len(self.crit.out_layers)):
|
||||
self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight
|
||||
|
||||
if tie_projs:
|
||||
for i, tie_proj in enumerate(tie_projs):
|
||||
if tie_proj and div_val == 1 and d_model != d_embed:
|
||||
self.crit.out_projs[i] = self.word_emb.emb_projs[0]
|
||||
elif tie_proj and div_val != 1:
|
||||
self.crit.out_projs[i] = self.word_emb.emb_projs[i]
|
||||
|
||||
self.same_length = same_length
|
||||
self.clamp_len = clamp_len
|
||||
|
||||
self._create_params()
|
||||
|
||||
def backward_compatible(self):
|
||||
self.sample_softmax = -1
|
||||
|
||||
def _create_params(self):
|
||||
if self.attn_type == 0: # default attention
|
||||
self.pos_emb = PositionalEmbedding(self.d_model)
|
||||
self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
|
||||
self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
|
||||
elif self.attn_type == 1: # learnable
|
||||
self.r_emb = nn.Parameter(torch.Tensor(
|
||||
self.n_layer, self.max_klen, self.n_head, self.d_head))
|
||||
self.r_w_bias = nn.Parameter(torch.Tensor(
|
||||
self.n_layer, self.n_head, self.d_head))
|
||||
self.r_bias = nn.Parameter(torch.Tensor(
|
||||
self.n_layer, self.max_klen, self.n_head))
|
||||
elif self.attn_type == 2: # absolute standard
|
||||
self.pos_emb = PositionalEmbedding(self.d_model)
|
||||
elif self.attn_type == 3: # absolute deeper SA
|
||||
self.r_emb = nn.Parameter(torch.Tensor(
|
||||
self.n_layer, self.max_klen, self.n_head, self.d_head))
|
||||
|
||||
def reset_length(self, tgt_len, ext_len, mem_len):
|
||||
self.tgt_len = tgt_len
|
||||
self.mem_len = mem_len
|
||||
self.ext_len = ext_len
|
||||
|
||||
def init_mems(self):
|
||||
if self.mem_len > 0:
|
||||
mems = []
|
||||
param = next(self.parameters())
|
||||
for i in range(self.n_layer+1):
|
||||
empty = torch.empty(0, dtype=param.dtype, device=param.device)
|
||||
mems.append(empty)
|
||||
|
||||
return mems
|
||||
else:
|
||||
return None
|
||||
|
||||
def _update_mems(self, hids, mems, qlen, mlen):
|
||||
# does not deal with None
|
||||
if mems is None: return None
|
||||
|
||||
# mems is not None
|
||||
assert len(hids) == len(mems), 'len(hids) != len(mems)'
|
||||
|
||||
# There are `mlen + qlen` steps that can be cached into mems
|
||||
# For the next step, the last `ext_len` of the `qlen` tokens
|
||||
# will be used as the extended context. Hence, we only cache
|
||||
# the tokens from `mlen + qlen - self.ext_len - self.mem_len`
|
||||
# to `mlen + qlen - self.ext_len`.
|
||||
with torch.no_grad():
|
||||
new_mems = []
|
||||
end_idx = mlen + max(0, qlen - 0 - self.ext_len)
|
||||
beg_idx = max(0, end_idx - self.mem_len)
|
||||
for i in range(len(hids)):
|
||||
|
||||
cat = torch.cat([mems[i], hids[i]], dim=0)
|
||||
new_mems.append(cat[beg_idx:end_idx].detach())
|
||||
|
||||
return new_mems
|
||||
|
||||
def _forward(self, dec_inp, mems=None):
|
||||
qlen, bsz = dec_inp.size()
|
||||
|
||||
word_emb = self.word_emb(dec_inp)
|
||||
|
||||
mlen = mems[0].size(0) if mems is not None else 0
|
||||
klen = mlen + qlen
|
||||
if self.same_length:
|
||||
all_ones = word_emb.new_ones(qlen, klen)
|
||||
mask_len = klen - self.mem_len
|
||||
if mask_len > 0:
|
||||
mask_shift_len = qlen - mask_len
|
||||
else:
|
||||
mask_shift_len = qlen
|
||||
dec_attn_mask = (torch.triu(all_ones, 1+mlen)
|
||||
+ torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None] # -1
|
||||
else:
|
||||
dec_attn_mask = torch.triu(
|
||||
word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]
|
||||
|
||||
hids = []
|
||||
if self.attn_type == 0: # default
|
||||
pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device,
|
||||
dtype=word_emb.dtype)
|
||||
if self.clamp_len > 0:
|
||||
pos_seq.clamp_(max=self.clamp_len)
|
||||
pos_emb = self.pos_emb(pos_seq)
|
||||
|
||||
core_out = self.drop(word_emb)
|
||||
pos_emb = self.drop(pos_emb)
|
||||
|
||||
hids.append(core_out)
|
||||
for i, layer in enumerate(self.layers):
|
||||
mems_i = None if mems is None else mems[i]
|
||||
core_out = layer(core_out, pos_emb, self.r_w_bias,
|
||||
self.r_r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
|
||||
hids.append(core_out)
|
||||
elif self.attn_type == 1: # learnable
|
||||
core_out = self.drop(word_emb)
|
||||
hids.append(core_out)
|
||||
for i, layer in enumerate(self.layers):
|
||||
if self.clamp_len > 0:
|
||||
r_emb = self.r_emb[i][-self.clamp_len :]
|
||||
r_bias = self.r_bias[i][-self.clamp_len :]
|
||||
else:
|
||||
r_emb, r_bias = self.r_emb[i], self.r_bias[i]
|
||||
|
||||
mems_i = None if mems is None else mems[i]
|
||||
core_out = layer(core_out, r_emb, self.r_w_bias[i],
|
||||
r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
|
||||
hids.append(core_out)
|
||||
elif self.attn_type == 2: # absolute
|
||||
pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
|
||||
dtype=word_emb.dtype)
|
||||
if self.clamp_len > 0:
|
||||
pos_seq.clamp_(max=self.clamp_len)
|
||||
pos_emb = self.pos_emb(pos_seq)
|
||||
|
||||
core_out = self.drop(word_emb + pos_emb[-qlen:])
|
||||
|
||||
hids.append(core_out)
|
||||
for i, layer in enumerate(self.layers):
|
||||
mems_i = None if mems is None else mems[i]
|
||||
if mems_i is not None and i == 0:
|
||||
mems_i += pos_emb[:mlen]
|
||||
core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
|
||||
mems=mems_i)
|
||||
hids.append(core_out)
|
||||
elif self.attn_type == 3:
|
||||
core_out = self.drop(word_emb)
|
||||
|
||||
hids.append(core_out)
|
||||
for i, layer in enumerate(self.layers):
|
||||
mems_i = None if mems is None else mems[i]
|
||||
if mems_i is not None and mlen > 0:
|
||||
cur_emb = self.r_emb[i][:-qlen]
|
||||
cur_size = cur_emb.size(0)
|
||||
if cur_size < mlen:
|
||||
cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
|
||||
cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
|
||||
else:
|
||||
cur_emb = cur_emb[-mlen:]
|
||||
mems_i += cur_emb.view(mlen, 1, -1)
|
||||
core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)
|
||||
|
||||
core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
|
||||
mems=mems_i)
|
||||
hids.append(core_out)
|
||||
|
||||
core_out = self.drop(core_out)
|
||||
|
||||
new_mems = self._update_mems(hids, mems, mlen, qlen)
|
||||
|
||||
return core_out, new_mems
|
||||
|
||||
def forward(self, data, target, *mems):
|
||||
# nn.DataParallel does not allow size(0) tensors to be broadcasted.
|
||||
# So, have to initialize size(0) mems inside the model forward.
|
||||
# Moreover, have to return new_mems to allow nn.DataParallel to piece
|
||||
# them together.
|
||||
if not mems: mems = self.init_mems()
|
||||
|
||||
tgt_len = target.size(0)
|
||||
hidden, new_mems = self._forward(data, mems=mems)
|
||||
|
||||
pred_hid = hidden[-tgt_len:]
|
||||
if self.sample_softmax > 0 and self.training:
|
||||
assert self.tie_weight
|
||||
logit = sample_logits(self.word_emb,
|
||||
self.out_layer.bias, target, pred_hid, self.sampler)
|
||||
loss = -F.log_softmax(logit, -1)[:, :, 0]
|
||||
else:
|
||||
loss = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target.view(-1))
|
||||
loss = loss.view(tgt_len, -1)
|
||||
|
||||
if new_mems is None:
|
||||
return [loss]
|
||||
else:
|
||||
return [loss] + new_mems
|
||||
|
||||
if __name__ == '__main__':
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='unit test')
|
||||
|
||||
parser.add_argument('--n_layer', type=int, default=4, help='')
|
||||
parser.add_argument('--n_rel_layer', type=int, default=4, help='')
|
||||
parser.add_argument('--n_head', type=int, default=2, help='')
|
||||
parser.add_argument('--d_head', type=int, default=2, help='')
|
||||
parser.add_argument('--d_model', type=int, default=200, help='')
|
||||
parser.add_argument('--d_embed', type=int, default=200, help='')
|
||||
parser.add_argument('--d_inner', type=int, default=200, help='')
|
||||
parser.add_argument('--dropout', type=float, default=0.0, help='')
|
||||
parser.add_argument('--cuda', action='store_true', help='')
|
||||
parser.add_argument('--seed', type=int, default=1111, help='')
|
||||
parser.add_argument('--multi_gpu', action='store_true', help='')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device("cuda" if args.cuda else "cpu")
|
||||
|
||||
B = 4
|
||||
tgt_len, mem_len, ext_len = 36, 36, 0
|
||||
data_len = tgt_len * 20
|
||||
args.n_token = 10000
|
||||
|
||||
import data_utils
|
||||
|
||||
data = torch.LongTensor(data_len*B).random_(0, args.n_token).to(device)
|
||||
diter = data_utils.LMOrderedIterator(data, B, tgt_len, device=device, ext_len=ext_len)
|
||||
|
||||
cutoffs = [args.n_token // 2]
|
||||
tie_projs = [False] + [True] * len(cutoffs)
|
||||
|
||||
for div_val in [1, 2]:
|
||||
for d_embed in [200, 100]:
|
||||
model = MemTransformerLM(args.n_token, args.n_layer, args.n_head,
|
||||
args.d_model, args.d_head, args.d_inner, args.dropout,
|
||||
dropatt=args.dropout, tie_weight=True,
|
||||
d_embed=d_embed, div_val=div_val,
|
||||
tie_projs=tie_projs, pre_lnorm=True,
|
||||
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
|
||||
cutoffs=cutoffs, attn_type=0).to(device)
|
||||
|
||||
print(sum(p.numel() for p in model.parameters()))
|
||||
|
||||
mems = tuple()
|
||||
for idx, (inp, tgt, seqlen) in enumerate(diter):
|
||||
print('batch {}'.format(idx))
|
||||
out = model(inp, tgt, *mems)
|
||||
mems = out[1:]
|
||||
Reference in a new issue