chore(transformer-xl): Initial commit
This commit is contained in:
parent
ef4684ef39
commit
10512876f2
46 changed files with 10547 additions and 0 deletions
122
transformer-xl/pytorch/eval.py
Normal file
122
transformer-xl/pytorch/eval.py
Normal file
|
|
@ -0,0 +1,122 @@
|
|||
# coding: utf-8
|
||||
import argparse
|
||||
import time
|
||||
import math
|
||||
import os, sys
|
||||
|
||||
import torch
|
||||
|
||||
from data_utils import get_lm_corpus
|
||||
from mem_transformer import MemTransformerLM
|
||||
from utils.exp_utils import get_logger
|
||||
|
||||
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
|
||||
parser.add_argument('--data', type=str, default='../data/wikitext-103',
|
||||
help='location of the data corpus')
|
||||
parser.add_argument('--dataset', type=str, default='wt103',
|
||||
choices=['wt103', 'lm1b', 'enwik8', 'text8'],
|
||||
help='dataset name')
|
||||
parser.add_argument('--split', type=str, default='all',
|
||||
choices=['all', 'valid', 'test'],
|
||||
help='which split to evaluate')
|
||||
parser.add_argument('--batch_size', type=int, default=10,
|
||||
help='batch size')
|
||||
parser.add_argument('--tgt_len', type=int, default=5,
|
||||
help='number of tokens to predict')
|
||||
parser.add_argument('--ext_len', type=int, default=0,
|
||||
help='length of the extended context')
|
||||
parser.add_argument('--mem_len', type=int, default=0,
|
||||
help='length of the retained previous heads')
|
||||
parser.add_argument('--clamp_len', type=int, default=-1,
|
||||
help='max positional embedding index')
|
||||
parser.add_argument('--cuda', action='store_true',
|
||||
help='use CUDA')
|
||||
parser.add_argument('--work_dir', type=str, required=True,
|
||||
help='path to the work_dir')
|
||||
parser.add_argument('--no_log', action='store_true',
|
||||
help='do not log the eval result')
|
||||
parser.add_argument('--same_length', action='store_true',
|
||||
help='set same length attention with masking')
|
||||
args = parser.parse_args()
|
||||
assert args.ext_len >= 0, 'extended context length must be non-negative'
|
||||
|
||||
device = torch.device("cuda" if args.cuda else "cpu")
|
||||
|
||||
# Get logger
|
||||
logging = get_logger(os.path.join(args.work_dir, 'log.txt'),
|
||||
log_=not args.no_log)
|
||||
|
||||
# Load dataset
|
||||
corpus = get_lm_corpus(args.data, args.dataset)
|
||||
ntokens = len(corpus.vocab)
|
||||
|
||||
va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
|
||||
device=device, ext_len=args.ext_len)
|
||||
te_iter = corpus.get_iterator('test', args.batch_size, args.tgt_len,
|
||||
device=device, ext_len=args.ext_len)
|
||||
|
||||
# Load the best saved model.
|
||||
with open(os.path.join(args.work_dir, 'model.pt'), 'rb') as f:
|
||||
model = torch.load(f)
|
||||
model.backward_compatible()
|
||||
model = model.to(device)
|
||||
|
||||
logging('Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}'.format(
|
||||
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len))
|
||||
|
||||
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
|
||||
if args.clamp_len > 0:
|
||||
model.clamp_len = args.clamp_len
|
||||
if args.same_length:
|
||||
model.same_length = True
|
||||
|
||||
###############################################################################
|
||||
# Evaluation code
|
||||
###############################################################################
|
||||
def evaluate(eval_iter):
|
||||
# Turn on evaluation mode which disables dropout.
|
||||
model.eval()
|
||||
total_len, total_loss = 0, 0.
|
||||
start_time = time.time()
|
||||
with torch.no_grad():
|
||||
mems = tuple()
|
||||
for idx, (data, target, seq_len) in enumerate(eval_iter):
|
||||
ret = model(data, target, *mems)
|
||||
loss, mems = ret[0], ret[1:]
|
||||
loss = loss.mean()
|
||||
total_loss += seq_len * loss.item()
|
||||
total_len += seq_len
|
||||
total_time = time.time() - start_time
|
||||
logging('Time : {:.2f}s, {:.2f}ms/segment'.format(
|
||||
total_time, 1000 * total_time / (idx+1)))
|
||||
return total_loss / total_len
|
||||
|
||||
# Run on test data.
|
||||
if args.split == 'all':
|
||||
test_loss = evaluate(te_iter)
|
||||
valid_loss = evaluate(va_iter)
|
||||
elif args.split == 'valid':
|
||||
valid_loss = evaluate(va_iter)
|
||||
test_loss = None
|
||||
elif args.split == 'test':
|
||||
test_loss = evaluate(te_iter)
|
||||
valid_loss = None
|
||||
|
||||
def format_log(loss, split):
|
||||
if args.dataset in ['enwik8', 'text8']:
|
||||
log_str = '| {0} loss {1:5.2f} | {0} bpc {2:9.5f} '.format(
|
||||
split, loss, loss / math.log(2))
|
||||
else:
|
||||
log_str = '| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '.format(
|
||||
split, loss, math.exp(loss))
|
||||
return log_str
|
||||
|
||||
log_str = ''
|
||||
if valid_loss is not None:
|
||||
log_str += format_log(valid_loss, 'valid')
|
||||
if test_loss is not None:
|
||||
log_str += format_log(test_loss, 'test')
|
||||
|
||||
logging('=' * 100)
|
||||
logging(log_str)
|
||||
logging('=' * 100)
|
||||
Reference in a new issue