fix: enwik dataset fix
This commit is contained in:
parent
fe207962de
commit
0577eee601
2 changed files with 34 additions and 12 deletions
|
|
@ -1,25 +1,43 @@
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
import torch
|
||||||
from os.path import curdir, join
|
from os.path import curdir, join
|
||||||
from .Dataset import Dataset
|
|
||||||
from torch.utils.data import TensorDataset
|
|
||||||
from typing import Callable
|
from typing import Callable
|
||||||
|
|
||||||
|
|
||||||
class EnWik9DataSet(Dataset):
|
class EnWik9DataSet(Dataset):
|
||||||
def __init__(self, root: str = "data", transform: Callable = None):
|
def __init__(self, root: str = "data", transform: Callable | None = None):
|
||||||
super().__init__(root, transform)
|
super().__init__()
|
||||||
|
self.transform = transform
|
||||||
|
|
||||||
|
# HuggingFace dataset: string text
|
||||||
path = join(curdir, root)
|
path = join(curdir, root)
|
||||||
self._root = path
|
|
||||||
|
|
||||||
data = load_dataset("haukur/enwik9", cache_dir=path, split="train")
|
data = load_dataset("haukur/enwik9", cache_dir=path, split="train")
|
||||||
|
|
||||||
|
# Extract raw text
|
||||||
text = data["text"]
|
text = data["text"]
|
||||||
self.dataset = TensorDataset(text)
|
|
||||||
|
# Convert text (Python string) → bytes → tensor of ints 0–255
|
||||||
|
# UTF-8 but non-ASCII bytes may exceed 255, so enforce modulo or ignore errors
|
||||||
|
byte_data = "".join(text).encode("utf-8", errors="replace")
|
||||||
|
self.data = torch.tensor(list(byte_data), dtype=torch.long)
|
||||||
|
|
||||||
|
# Model uses fixed 128-length context
|
||||||
|
self.context_length = 128
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.dataset)
|
# number of sliding windows
|
||||||
|
return len(self.data) - self.context_length
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
if self.transform is not None:
|
# context window
|
||||||
return self.transform(self.dataset[idx])
|
x = self.data[idx : idx + self.context_length]
|
||||||
return self.dataset[idx]
|
|
||||||
|
# next byte target
|
||||||
|
y = self.data[idx + self.context_length]
|
||||||
|
|
||||||
|
if self.transform:
|
||||||
|
x = self.transform(x)
|
||||||
|
|
||||||
|
return x, y
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -20,6 +20,7 @@ if __name__ == "__main__":
|
||||||
parser.add_argument("--model-path", type=str, required=False)
|
parser.add_argument("--model-path", type=str, required=False)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
print("Loading in the dataset...")
|
||||||
if args.method == "train":
|
if args.method == "train":
|
||||||
dataset: Dataset = EnWik9DataSet(transform=lambda x: x.to(DEVICE))
|
dataset: Dataset = EnWik9DataSet(transform=lambda x: x.to(DEVICE))
|
||||||
elif args.method == "optuna":
|
elif args.method == "optuna":
|
||||||
|
|
@ -28,9 +29,11 @@ if __name__ == "__main__":
|
||||||
raise ValueError(f"Unknown method: {args.method}")
|
raise ValueError(f"Unknown method: {args.method}")
|
||||||
|
|
||||||
dataset_length = len(dataset)
|
dataset_length = len(dataset)
|
||||||
|
print(f"Dataset size = {dataset_length}")
|
||||||
|
|
||||||
training_size = ceil(0.8 * dataset_length)
|
training_size = ceil(0.8 * dataset_length)
|
||||||
|
|
||||||
print(f"training set size = {training_size}, validation set size {dataset_length - training_size}")
|
print(f"Training set size = {training_size}, Validation set size {dataset_length - training_size}")
|
||||||
|
|
||||||
train_set, validate_set = torch.utils.data.random_split(dataset,
|
train_set, validate_set = torch.utils.data.random_split(dataset,
|
||||||
[training_size, dataset_length - training_size])
|
[training_size, dataset_length - training_size])
|
||||||
|
|
@ -40,6 +43,7 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
model = None
|
model = None
|
||||||
if args.model_path is not None:
|
if args.model_path is not None:
|
||||||
|
print("Loading the model...")
|
||||||
model = torch.load(args.model_path)
|
model = torch.load(args.model_path)
|
||||||
|
|
||||||
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer()
|
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer()
|
||||||
|
|
|
||||||
Reference in a new issue