fix: enwik dataset fix

This commit is contained in:
Robin Meersman 2025-11-28 09:27:37 +01:00
parent fe207962de
commit 0577eee601
2 changed files with 34 additions and 12 deletions

View file

@ -1,25 +1,43 @@
from datasets import load_dataset
from torch.utils.data import Dataset
import torch
from os.path import curdir, join
from .Dataset import Dataset
from torch.utils.data import TensorDataset
from typing import Callable
class EnWik9DataSet(Dataset):
def __init__(self, root: str = "data", transform: Callable = None):
super().__init__(root, transform)
def __init__(self, root: str = "data", transform: Callable | None = None):
super().__init__()
self.transform = transform
# HuggingFace dataset: string text
path = join(curdir, root)
self._root = path
data = load_dataset("haukur/enwik9", cache_dir=path, split="train")
# Extract raw text
text = data["text"]
self.dataset = TensorDataset(text)
# Convert text (Python string) → bytes → tensor of ints 0255
# UTF-8 but non-ASCII bytes may exceed 255, so enforce modulo or ignore errors
byte_data = "".join(text).encode("utf-8", errors="replace")
self.data = torch.tensor(list(byte_data), dtype=torch.long)
# Model uses fixed 128-length context
self.context_length = 128
def __len__(self):
return len(self.dataset)
# number of sliding windows
return len(self.data) - self.context_length
def __getitem__(self, idx):
if self.transform is not None:
return self.transform(self.dataset[idx])
return self.dataset[idx]
# context window
x = self.data[idx : idx + self.context_length]
# next byte target
y = self.data[idx + self.context_length]
if self.transform:
x = self.transform(x)
return x, y

View file

@ -20,6 +20,7 @@ if __name__ == "__main__":
parser.add_argument("--model-path", type=str, required=False)
args = parser.parse_args()
print("Loading in the dataset...")
if args.method == "train":
dataset: Dataset = EnWik9DataSet(transform=lambda x: x.to(DEVICE))
elif args.method == "optuna":
@ -28,9 +29,11 @@ if __name__ == "__main__":
raise ValueError(f"Unknown method: {args.method}")
dataset_length = len(dataset)
print(f"Dataset size = {dataset_length}")
training_size = ceil(0.8 * dataset_length)
print(f"training set size = {training_size}, validation set size {dataset_length - training_size}")
print(f"Training set size = {training_size}, Validation set size {dataset_length - training_size}")
train_set, validate_set = torch.utils.data.random_split(dataset,
[training_size, dataset_length - training_size])
@ -40,6 +43,7 @@ if __name__ == "__main__":
model = None
if args.model_path is not None:
print("Loading the model...")
model = torch.load(args.model_path)
trainer: Trainer = OptunaTrainer() if args.method == "optuna" else FullTrainer()