Merge pull request #12 from ML/process

(De-) Compression
This commit is contained in:
Robin Meersman 2025-12-13 18:03:27 +01:00 committed by GitHub Enterprise
commit 04fa7c2387
15 changed files with 1824 additions and 21 deletions

View file

@ -1,19 +1,40 @@
# neural compression
Example usage:
```shell
python main.py --debug train --dataset enwik9 --data-root ~/data/datasets/ml --method optuna --model transformer --model-save-path ~/data/ml-models/test-transformer.pt
python benchmark.py --debug train --dataset enwik9 --data-root ~/data/datasets/ml --method optuna --model cnn --model-save-path ~/data/ml-models/test-cnn.pt
```
## Running locally
```
uv sync --all-extras
```
Example usage:
```shell
# Fetching
python main.py --debug train --method fetch \
--dataset enwik9 --data-root /path/to/datasets
# Training
python main.py --debug train --method optuna \
--dataset enwik9 --data-root /path/to/datasets \
--model cnn --model-save-path /path/to/optuna-model
python main.py --debug --results /path/to/results train --method full \
--dataset enwik9 --data-root /path/to/datasets \
--model-load-path /path/to/optuna-model --model-save-path /path/to/full-model
# Compressing
python benchmark.py --debug compress \
--model-load-path /path/to/full-model \
--input-file inputfile --output-file outputfile
```
Testing compression:
```shell
bash config/download_datasets.sh config/urls.txt /home/tdpeuter/data/ml-inputs
bash config/generate_csv.sh > config/sub.csv
bash config/local.sh
```
## Running on the Ghent University HPC
See the [Infrastructure docs](https://docs.hpc.ugent.be/infrastructure/#gpu-clusters) for more information about the clusters.

View file

@ -0,0 +1,95 @@
#!/usr/bin/env bash
# Download all URLs (one per line) from a txt file into a destination directory.
# This script is written by Copilot
set -uo pipefail
usage() {
echo "Usage: $0 <urls.txt> <destination_dir>"
echo "Example: $0 urls.txt ~/Downloads/files"
exit 1
}
# ---- Args & prerequisites ----
[[ $# -ne 2 ]] && usage
URLS_FILE="$1"
DEST_DIR="$2"
if [[ ! -f "$URLS_FILE" ]]; then
echo "Error: URL list file not found: $URLS_FILE" >&2
exit 2
fi
mkdir -p "$DEST_DIR" || {
echo "Error: Cannot create/access destination directory: $DEST_DIR" >&2
exit 3
}
# Prefer curl if available; otherwise try wget
DOWNLOADER=""
if command -v wget >/dev/null 2>&1; then
DOWNLOADER="wget"
else
echo "Error: Neither 'curl' nor 'wget' found. Please install one." >&2
exit 4
fi
echo "Using downloader: $DOWNLOADER"
echo "Reading URLs from: $URLS_FILE"
echo "Saving to: $DEST_DIR"
echo
# ---- Download loop ----
# Reads lines including the last one even if it lacks a trailing newline.
while IFS= read -r url || [[ -n "$url" ]]; do
# Skip empty lines and comments
[[ -z "$url" ]] && continue
[[ "$url" =~ ^[[:space:]]*# ]] && continue
# Optional: strip leading/trailing whitespace
url="$(printf '%s' "$url" | awk '{$1=$1;print}')"
# Basic scheme check
if ! [[ "$url" =~ ^https?:// ]]; then
echo "Skipping (invalid URL scheme): $url" >&2
continue
fi
echo "→ Downloading: $url"
if [[ "$DOWNLOADER" == "curl" ]]; then
# -f fail on HTTP errors
# -L follow redirects
# -C - resume if possible
# --retry 3 retry transient failures
# -OJ save using server-provided filename (Content-Disposition) if present
# (cd to dest so curl -O/-OJ writes there)
(
cd "$DEST_DIR" && \
curl -fL -C - --retry 3 --remote-header-name -OJ "$url"
) || {
echo " ⚠️ Failed: $url" >&2
}
else
# wget:
# --content-disposition: respect server-provided filename
# --tries=3, --timeout=10: retry/transient handling
# --directory-prefix: write to dest
# --no-clobber: skip file if it already exists
wget -q --content-disposition --tries=3 --timeout=10 \
--directory-prefix="$DEST_DIR" --no-clobber "$url" || {
echo " ⚠️ Failed: $url" >&2
}
fi
# Extract .gz files
if [[ "$url" =~ \.gz$ ]]; then
filename="${url##*/}"
echo "Extracting: $filename"
gunzip "$DEST_DIR/${filename}"
fi
done < "$URLS_FILE"
echo
echo "✅ Done. Files saved in: $DEST_DIR"

106
config/generate_csv.sh Normal file
View file

@ -0,0 +1,106 @@
#!/usr/bin/env bash
# Generate a CSV that enumerates a test grid for your Python benchmarking script.
# Columns: model,context_size,extra_args
#
# Example:
# ./generate_grid_csv.sh > grid.csv
# ./generate_grid_csv.sh -o grid.csv
#
# You can customize the axes below (MODELS, CONTEXTS, TEMPERATURES, MAX_TOKENS)
# and add common extra args (COMMON_EXTRA). All fields are safely CSV-quoted.
set -euo pipefail
OUT_FILE=""
SHOW_HELP=false
usage() {
cat <<'EOF'
Usage:
generate_grid_csv.sh [-o output.csv]
Options:
-o <file> Write CSV to this file instead of stdout
-h Show this help
Customize the axes by editing arrays in the script:
MODELS, CONTEXTS, TEMPERATURES, MAX_TOKENS, COMMON_EXTRA
Examples:
./generate_grid_csv.sh > grid.csv
./generate_grid_csv.sh -o grid.csv
Tip:
You can also override arrays via env vars (space-separated), e.g.:
MODELS="gpt-4o-mini llama-3.1-8b" CONTEXTS="4096 8192" ./generate_grid_csv.sh > grid.csv
EOF
}
# --- Parse flags ---
while getopts ":o:h" opt; do
case "$opt" in
o) OUT_FILE="$OPTARG" ;;
h) SHOW_HELP=true ;;
\?) echo "Invalid option: -$OPTARG" >&2; usage; exit 2 ;;
:) echo "Option -$OPTARG requires an argument." >&2; exit 2 ;;
esac
done
shift $((OPTIND - 1))
$SHOW_HELP && { usage; exit 0; }
# --- Axes (edit or override via env) ---
# You can override these by exporting env vars before running, e.g.:
# export MODELS="gpt-4o-mini llama-3.1-8b"
# shellcheck disable=SC2206
DATASETS=${DATASETS:-"enwik9 human_reference"}
CONTEXTS=${CONTEXTS:-"64"}
# Convert space-separated env vars to bash arrays
# shellcheck disable=SC2206
DATASETS_ARR=($DATASETS)
CONTEXTS_ARR=($CONTEXTS)
# --- CSV helpers ---
csv_escape() {
# Escape double quotes by doubling them, and wrap the whole field in quotes.
local s="$1"
s=${s//\"/\"\"}
printf '%s' "$s"
}
emit() {
# Write to file or stdout
if [[ -n "$OUT_FILE" ]]; then
printf "%s\n" "$1" >> "$OUT_FILE"
else
printf "%s\n" "$1"
fi
}
# Prepare output
if [[ -n "$OUT_FILE" ]]; then
: > "$OUT_FILE" # truncate/initialize
fi
# Header
emit "id,input,model,dataset,context_size"
# --- Generate rows (Cartesian product) ---
id=0
model="cnn"
for file in /home/tdpeuter/data/ml-inputs/*; do
for dataset in "${DATASETS_ARR[@]}"; do
for ctx in "${CONTEXTS_ARR[@]}"; do
# CSV-quote each field
row="${id},$(csv_escape "${file}"),$(csv_escape "${model}"),$(csv_escape "${dataset}"),$ctx"
emit "$row"
id=$((id+1))
done
done
done
# Done
if [[ -n "$OUT_FILE" ]]; then
echo "CSV written to: $OUT_FILE"
fi

38
config/local.sh Normal file
View file

@ -0,0 +1,38 @@
#!/usr/bin/env bash
INPUT_FILE="config/sub.csv"
JOBID="$(date +%s | tail -c 9)"
GIT_HASH="$(git rev-parse --short HEAD)"
DATE="$(date "+%Y%m%d")"
ID="${JOBID}-${GIT_HASH}-${DATE}"
STAT_FILE="results/${ID}/results.csv"
MODELS=/home/tdpeuter/data/ml-models
mkdir -p "results/${ID}"
while read -r line; do
IFS=',' read -r id input model dataset context <<< "$line"
if [[ "${id}" == "id" ]]; then
continue
fi
output="results/${ID}/$(basename "${input}").${id}.pt"
python main.py compress \
--model-load-path "${MODELS}/${dataset}/${context}/${model}-1024.pt" \
--input-file "${input}" \
--output-file "${output}"
in_bytes="$(stat -c %s -- "${input}")"
out_bytes="$(stat -c %s -- "${output}")"
printf "%d,%s,%s,%s,%d,%d,%d\n" "$id" "$input" "$model" "$dataset" "$context" "$in_bytes" "$out_bytes" >> "${STAT_FILE}"
exit_code="${?}"
if [ "${exit_code}" -eq 0 ]; then
echo "DONE"
fi
done < "${INPUT_FILE}"

View file

@ -0,0 +1,207 @@
# Edit this configuration file to define what should be installed on
# your system. Help is available in the configuration.nix(5) man page, on
# https://search.nixos.org/options and in the NixOS manual (`nixos-help`).
{ config, lib, pkgs, ... }:
{
imports =
[ # Include the results of the hardware scan.
./hardware-configuration.nix
];
# Use the systemd-boot EFI boot loader.
boot.loader = {
systemd-boot.enable = true;
efi = {
efiSysMountPoint = "/boot/efi";
canTouchEfiVariables = true;
};
};
networking.hostName = "MachineLearning"; # Define your hostname.
# Pick only one of the below networking options.
# networking.wireless.enable = true; # Enables wireless support via wpa_supplicant.
# networking.networkmanager.enable = true; # Easiest to use and most distros use this by default.
# Set your time zone.
time.timeZone = "Europe/Brussels";
# Configure network proxy if necessary
# networking.proxy.default = "http://user:password@proxy:port/";
# networking.proxy.noProxy = "127.0.0.1,localhost,internal.domain";
# Select internationalisation properties.
# i18n.defaultLocale = "en_US.UTF-8";
# console = {
# font = "Lat2-Terminus16";
# keyMap = "us";
# useXkbConfig = true; # use xkb.options in tty.
# };
# Enable the X11 windowing system.
services.xserver = {
#enable = true;
videoDrivers = [
"nvidia"
];
};
# Configure keymap in X11
# services.xserver.xkb.layout = "us";
# services.xserver.xkb.options = "eurosign:e,caps:escape";
# Enable CUPS to print documents.
# services.printing.enable = true;
# Enable sound.
# services.pulseaudio.enable = true;
# OR
# services.pipewire = {
# enable = true;
# pulse.enable = true;
# };
# Enable touchpad support (enabled default in most desktopManager).
# services.libinput.enable = true;
# Define a user account. Don't forget to set a password with passwd.
# users.users.alice = {
# isNormalUser = true;
# extraGroups = [ "wheel" ]; # Enable sudo for the user.
# packages = with pkgs; [
# tree
# ];
# };
users.users = {
admin = {
description = "System Administrator";
isNormalUser = true;
extraGroups = [
config.users.groups.wheel.name # Enable 'sudo' for the user.
];
initialPassword = "ChangeMe";
openssh.authorizedKeys.keys = [
"ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIFdkZTYhBdUJ1YXx/2Iek0XC/jkbdxg37GORpXUgP2NO"
"ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIGNSav7u6OxtxlAzq170/HuzE8cGvCULVGAiragtS5T6"
];
};
ml = {
description = "Machine Learning benchmarks";
isNormalUser = true;
openssh.authorizedKeys.keys = [
"ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIFdkZTYhBdUJ1YXx/2Iek0XC/jkbdxg37GORpXUgP2NO"
"ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIGNSav7u6OxtxlAzq170/HuzE8cGvCULVGAiragtS5T6"
];
};
};
# programs.firefox.enable = true;
# List packages installed in system profile.
# You can use https://search.nixos.org/ to find more packages (and options).
environment.systemPackages = with pkgs; [
vim
curl
git
wget
tmux
];
hardware = {
graphics = {
enable = true;
enable32Bit = true;
extraPackages = with pkgs; [
intel-ocl
intel-compute-runtime
intel-graphics-compiler
opencl-clhpp
opencl-headers
ocl-icd
];
};
nvidia = {
modesetting.enable = true;
powerManagement.enable = false;
powerManagement.finegrained = false;
open = false;
nvidiaSettings = false;
package = config.boot.kernelPackages.nvidiaPackages.stable;
# prime = {
# nvidiaBusId = "PCI:1:0:0";
# intelBusId = "PCI:0:2:0";
# };
};
};
# Some programs need SUID wrappers, can be configured further or are
# started in user sessions.
# programs.mtr.enable = true;
# programs.gnupg.agent = {
# enable = true;
# enableSSHSupport = true;
# };
nix.settings = {
substituters = [
"https://cache.nixos-cuda.org"
];
trusted-public-keys = [
"cache.nixos-cuda.org:74DUi4Ye579gUqzH4ziL9IyiJBlDpMRn9MBN8oNan9M="
];
experimental-features = [
"nix-command"
"flakes"
];
};
nixpkgs.config.allowUnfree = true;
# List services that you want to enable:
# Enable the OpenSSH daemon.
services.openssh = {
enable = true;
settings = {
PasswordAuthentication = false;
PermitRootLogin = "no";
};
};
# Open ports in the firewall.
# networking.firewall.allowedTCPPorts = [ ... ];
# networking.firewall.allowedUDPPorts = [ ... ];
# Or disable the firewall altogether.
# networking.firewall.enable = false;
# Copy the NixOS configuration file and link it from the resulting system
# (/run/current-system/configuration.nix). This is useful in case you
# accidentally delete configuration.nix.
# system.copySystemConfiguration = true;
# This option defines the first version of NixOS you have installed on this particular machine,
# and is used to maintain compatibility with application data (e.g. databases) created on older NixOS versions.
#
# Most users should NEVER change this value after the initial install, for any reason,
# even if you've upgraded your system to a new NixOS release.
#
# This value does NOT affect the Nixpkgs version your packages and OS are pulled from,
# so changing it will NOT upgrade your system - see https://nixos.org/manual/nixos/stable/#sec-upgrading for how
# to actually do that.
#
# This value being lower than the current NixOS release does NOT mean your system is
# out of date, out of support, or vulnerable.
#
# Do NOT change this value unless you have manually inspected all the changes it would make to your configuration,
# and migrated your data accordingly.
#
# For more information, see `man configuration.nix` or https://nixos.org/manual/nixos/stable/options#opt-system.stateVersion .
system.stateVersion = "25.05"; # Did you read the comment?
}

151
config/nix/flake.lock generated Normal file
View file

@ -0,0 +1,151 @@
{
"nodes": {
"flake-utils": {
"inputs": {
"systems": "systems"
},
"locked": {
"lastModified": 1731533236,
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"flake-utils_2": {
"inputs": {
"systems": [
"nix-jetbrains-plugins",
"systems"
]
},
"locked": {
"lastModified": 1731533236,
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"nix-jetbrains-plugins": {
"inputs": {
"flake-utils": "flake-utils_2",
"nixpkgs": "nixpkgs",
"systems": "systems_2"
},
"locked": {
"lastModified": 1765025946,
"narHash": "sha256-ZSeAc3h08Lv67gbUjDMK6GTrQgYsrNpFNJEavCPxN8I=",
"owner": "theCapypara",
"repo": "nix-jetbrains-plugins",
"rev": "b861755ca1f4f7633ffdddc5608c32632cecebc3",
"type": "github"
},
"original": {
"owner": "theCapypara",
"repo": "nix-jetbrains-plugins",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1757745802,
"narHash": "sha256-hLEO2TPj55KcUFUU1vgtHE9UEIOjRcH/4QbmfHNF820=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "c23193b943c6c689d70ee98ce3128239ed9e32d1",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs-unstable": {
"locked": {
"lastModified": 1765186076,
"narHash": "sha256-hM20uyap1a0M9d344I692r+ik4gTMyj60cQWO+hAYP8=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "addf7cf5f383a3101ecfba091b98d0a1263dc9b8",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs_2": {
"locked": {
"lastModified": 1764939437,
"narHash": "sha256-4TLFHUwXraw9Df5mXC/vCrJgb50CRr3CzUzF0Mn3CII=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "00d2457e2f608b4be6fe8b470b0a36816324b0ae",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-25.05",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"flake-utils": "flake-utils",
"nix-jetbrains-plugins": "nix-jetbrains-plugins",
"nixpkgs": "nixpkgs_2",
"nixpkgs-unstable": "nixpkgs-unstable"
}
},
"systems": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_2": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
}
},
"root": "root",
"version": 7
}

66
config/nix/flake.nix Normal file
View file

@ -0,0 +1,66 @@
{
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-25.05";
nixpkgs-unstable.url = "github:NixOS/nixpkgs/nixos-unstable";
flake-utils.url = "github:numtide/flake-utils";
nix-jetbrains-plugins.url = "github:theCapypara/nix-jetbrains-plugins";
};
outputs = { self, nixpkgs, nixpkgs-unstable, flake-utils, nix-jetbrains-plugins }:
flake-utils.lib.eachDefaultSystem (system: let
pkgs = import nixpkgs {
inherit system;
config.allowUnfree = true;
};
pkgs-unstable = import nixpkgs-unstable {
inherit system;
config.allowUnfree = true;
};
python-packages = p: with p; [
numpy
];
pluginList = [
"be.ugent.piedcler.dodona"
"com.github.copilot"
"com.google.tools.ij.aiplugin"
"IdeaVIM"
];
mkShell = pkgs.mkShell.override {
stdenv = pkgs.stdenvAdapters.useMoldLinker pkgs.stdenv;
};
in {
devShells.default = pkgs.mkShell {
packages = (with pkgs; [
python311
(python-packages python311Packages)
# CUDA
git gitRepo gnupg autoconf curl
procps gnumake util-linux m4 gperf unzip
cudatoolkit linuxPackages.nvidia_x11
libGLU libGL
xorg.libXi xorg.libXmu freeglut
xorg.libXext xorg.libX11 xorg.libXv xorg.libXrandr zlib
ncurses5 stdenv.cc binutils
]) ++ (with pkgs-unstable; [
uv
]) ++ (with nix-jetbrains-plugins.lib."${system}"; [
# Editor of your choice
#(buildIdeWithPlugins pkgs-unstable.jetbrains "pycharm-professional" pluginList)
]);
# CUDA
CUDA_PATH = pkgs.cudatoolkit;
# ImportError: libstdc++.so.6: cannot open shared object file: No such file or directory
LD_LIBRARY_PATH = "${pkgs.linuxPackages.nvidia_x11}/lib:${pkgs.ncurses5}/lib:${pkgs.libGL}/lib/:${pkgs.stdenv.cc.cc.lib}/lib/:${pkgs.glibc}/lib";
EXTRA_LDFLAGS = "-L/lib -L${pkgs.linuxPackages.nvidia_x11}/lib";
EXTRA_CCFLAGS = "-I/usr/include";
# Stop uv from downloading Python binaries automatically if needed.
UV_PYTHON_DOWNLOADS = "never";
};
});
}

9
config/sub.csv Normal file
View file

@ -0,0 +1,9 @@
id,input,model,dataset,context_size
0,/home/tdpeuter/data/ml-inputs/7z2501-x64.exe,cnn,enwik9,64
1,/home/tdpeuter/data/ml-inputs/7z2501-x64.exe,cnn,human_reference,64
2,/home/tdpeuter/data/ml-inputs/Firefox Setup 146.0.exe,cnn,enwik9,64
3,/home/tdpeuter/data/ml-inputs/Firefox Setup 146.0.exe,cnn,human_reference,64
4,/home/tdpeuter/data/ml-inputs/GCF_000005845.2_ASM584v2_genomic.fna,cnn,enwik9,64
5,/home/tdpeuter/data/ml-inputs/GCF_000005845.2_ASM584v2_genomic.fna,cnn,human_reference,64
6,/home/tdpeuter/data/ml-inputs/GCF_000005845.2_ASM584v2_genomic.fna.gz,cnn,enwik9,64
7,/home/tdpeuter/data/ml-inputs/GCF_000005845.2_ASM584v2_genomic.fna.gz,cnn,human_reference,64
1 id input model dataset context_size
2 0 /home/tdpeuter/data/ml-inputs/7z2501-x64.exe cnn enwik9 64
3 1 /home/tdpeuter/data/ml-inputs/7z2501-x64.exe cnn human_reference 64
4 2 /home/tdpeuter/data/ml-inputs/Firefox Setup 146.0.exe cnn enwik9 64
5 3 /home/tdpeuter/data/ml-inputs/Firefox Setup 146.0.exe cnn human_reference 64
6 4 /home/tdpeuter/data/ml-inputs/GCF_000005845.2_ASM584v2_genomic.fna cnn enwik9 64
7 5 /home/tdpeuter/data/ml-inputs/GCF_000005845.2_ASM584v2_genomic.fna cnn human_reference 64
8 6 /home/tdpeuter/data/ml-inputs/GCF_000005845.2_ASM584v2_genomic.fna.gz cnn enwik9 64
9 7 /home/tdpeuter/data/ml-inputs/GCF_000005845.2_ASM584v2_genomic.fna.gz cnn human_reference 64

2
config/urls.txt Normal file
View file

@ -0,0 +1,2 @@
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz
https://www.7-zip.org/a/7z2501-x64.exe

View file

@ -40,7 +40,8 @@ def main():
compress(device=device,
model_path=args.model_load_path,
input_file=args.input_file,
output_file=args.output_file
output_file=args.output_file,
context_length=args.context
)
case _:

View file

@ -8,6 +8,7 @@ dependencies = [
"datasets<4.0.0",
"fsspec==2024.9.0",
"lorem>=0.1.1",
"arithmeticencodingpython",
]
[project.optional-dependencies]
@ -24,3 +25,6 @@ dataset = [
"biopython>=1.86",
"regex>=2025.11.3",
]
[tool.uv.sources]
arithmeticencodingpython = { git = "https://github.com/ahmedfgad/ArithmeticEncodingPython.git", rev = "60aad0528c57289218b241d75993574f31b90456" }

View file

@ -1,13 +1,36 @@
import contextlib
from collections import deque
from decimal import Decimal
import numpy as np
import torch
from tqdm import tqdm
from src.utils import reference_ae
def probs_to_freqs(probs, total_freq=8192):
freqs = (probs * total_freq).round().long()
# Ensure no zero-frequency symbol if needed
freqs[freqs == 0] = 1
# Re-normalize so the sum matches total_freq
diff = total_freq - freqs.sum()
freqs[0] += diff # fix the sum by adjusting the first bin
return freqs
def compress(
device,
model_path: str,
output_file: str,
input_file: str | None = None
device,
model_path: str,
context_length: int = 128,
input_file: str | None = None,
output_file: str | None = None
):
# Get input to compress
print("Reading input")
if input_file:
with open(input_file, "rb") as file:
byte_data = file.read()
@ -16,15 +39,135 @@ def compress(
text = input()
byte_data = text.encode('utf-8', errors='replace')
print("Converting to tensor")
tensor = torch.tensor(list(byte_data), dtype=torch.long)
print(tensor)
# Get model
print("Loading model")
model = torch.load(model_path, weights_only=False)
model.to(device)
model.eval()
# TODO Feed to model for compression, store result
return
# Init AE
print("Initializing AE")
with contextlib.closing(reference_ae.BitOutputStream(open(output_file, "wb"))) as bitout:
enc = reference_ae.ArithmeticEncoder(len(byte_data), bitout)
context = deque([0] * context_length, maxlen=context_length)
stage_min, stage_max = Decimal(0), Decimal(1)
stage = None
# Compress
for byte in tqdm(tensor.tolist(), desc="Compressing"):
context_tensor = torch.tensor([list(context)], dtype=torch.long, device=device)
with torch.inference_mode():
logits = model(context_tensor)
#normalize
mean = logits.mean(dim=-1, keepdim=True)
std = logits.std(dim=-1, keepdim=True)
logits = (logits - mean) / (std + 1e-6)
print(f"logits: {logits}")
probabilities = torch.softmax(logits[0], dim=-1)
print(f"probabilities: {probabilities}")
probabilities = probabilities.detach()
eps = 1e-8
# np.add(probabilities, eps)
# frequency_table = {i: float(probabilities[i]) + eps for i in range(len(probabilities))}
probability_table = reference_ae.SimpleFrequencyTable(probs_to_freqs(probabilities))
# probability_table = AE.get_probability_table(frequency_table)
enc.write(probability_table, byte)
context.append(byte)
# print("Getting encoded value")
# interval_min, interval_max, _ = AE.get_encoded_value(stage)
# print("Encoding in binary")
# binary_code, _ = AE.custom_binary_encoding(interval_min, interval_max)
# Pack
# val = int(binary_code, 2) if len(binary_code) else 0
# out_bytes = val.to_bytes((len(binary_code) + 7) // 8, "big")
# if output_file:
# print(f"Writing to {output_file}")
# with open(output_file, "w") as file:
# file.write(f"{len(byte_data)}\n")
# file.write(binary_code) # todo: temporary, decoding depends on binary string
# else:
# print(out_bytes)
def decompress():
return NotImplementedError("Decompression is not implemented yet")
def bits_to_number(bits: str) -> float:
n = 0
for i, bit in enumerate(bits, start=1):
n += int(bit) / (1 << i)
return n
def make_cumulative(probs):
cumulative = []
total = 0
for prob in probs:
low = total
high = total + prob
cumulative.append((low, high))
total = high
return cumulative
def decompress(
device,
model_path: str,
input_file: str,
output_file: str | None = None
):
context_length = 128
print("Reading in the data")
with open(input_file, "r") as f:
length = int(f.readline())
bytes_data = f.read()
if len(bytes_data) == 0:
print("Input file is empty, nothing has to be done...")
return
print("Loading the model")
model = torch.load(model_path, weights_only=False)
model.to(device)
model.eval()
print("Decompressing")
context = deque([0] * context_length, maxlen=context_length)
output = bytearray()
x = bits_to_number(bytes_data)
for _ in range(length):
probs = model(context)
cumulative = make_cumulative(probs)
for symbol, (low, high) in enumerate(cumulative):
if low <= x < high:
break
output.append(symbol)
context.append(chr(symbol))
interval_low, interval_high = cumulative[symbol]
interval_width = interval_high - interval_low
x = (x - interval_low) / interval_width
if output_file is not None:
with open(output_file, "wb") as f:
f.write(output)
return
print(output.decode('utf-8', errors='replace'))

352
src/utils/custom_ae.py Normal file
View file

@ -0,0 +1,352 @@
from decimal import Decimal
class CustomArithmeticEncoding:
"""
ArithmeticEncoding is a class for building the arithmetic encoding.
"""
def __init__(self, frequency_table, save_stages=False):
"""
frequency_table: Frequency table as a dictionary where key is the symbol and value is the frequency.
save_stages: If True, then the intervals of each stage are saved in a list. Note that setting save_stages=True may cause memory overflow if the message is large
"""
self.save_stages = save_stages
if (save_stages == True):
print("WARNING: Setting save_stages=True may cause memory overflow if the message is large.")
self.probability_table = self.get_probability_table(frequency_table)
def get_probability_table(self, frequency_table):
"""
Calculates the probability table out of the frequency table.
frequency_table: A table of the term frequencies.
Returns the probability table.
"""
total_frequency = sum(list(frequency_table.values()))
probability_table = {}
for key, value in frequency_table.items():
probability_table[key] = value / total_frequency
return probability_table
def get_encoded_value(self, last_stage_probs):
"""
After encoding the entire message, this method returns the single value that represents the entire message.
last_stage_probs: A list of the probabilities in the last stage.
Returns the minimum and maximum probabilites in the last stage in addition to the value encoding the message.
"""
last_stage_probs = list(last_stage_probs.values())
last_stage_values = []
for sublist in last_stage_probs:
for element in sublist:
last_stage_values.append(element)
last_stage_min = min(last_stage_values)
last_stage_max = max(last_stage_values)
encoded_value = (last_stage_min + last_stage_max) / 2
return last_stage_min, last_stage_max, encoded_value
def process_stage(self, probability_table, stage_min, stage_max):
"""
Processing a stage in the encoding/decoding process.
probability_table: The probability table.
stage_min: The minumim probability of the current stage.
stage_max: The maximum probability of the current stage.
Returns the probabilities in the stage.
"""
stage_probs = {}
stage_domain = stage_max - stage_min
for term_idx in range(len(probability_table.items())):
term = list(probability_table.keys())[term_idx]
term_prob = Decimal(probability_table[term])
cum_prob = term_prob * stage_domain + stage_min
stage_probs[term] = [stage_min, cum_prob]
stage_min = cum_prob
return stage_probs
def encode(self, msg, probability_table):
"""
Encodes a message using arithmetic encoding.
msg: The message to be encoded.
probability_table: The probability table.
Returns the encoder, the floating-point value representing the encoded message, and the maximum and minimum values of the interval in which the floating-point value falls.
"""
msg = list(msg)
encoder = []
stage_min = Decimal(0.0)
stage_max = Decimal(1.0)
for msg_term_idx in range(len(msg)):
stage_probs = self.process_stage(probability_table, stage_min, stage_max)
msg_term = msg[msg_term_idx]
stage_min = stage_probs[msg_term][0]
stage_max = stage_probs[msg_term][1]
if self.save_stages:
encoder.append(stage_probs)
last_stage_probs = self.process_stage(probability_table, stage_min, stage_max)
if self.save_stages:
encoder.append(last_stage_probs)
interval_min_value, interval_max_value, encoded_msg = self.get_encoded_value(last_stage_probs)
return encoded_msg, encoder, interval_min_value, interval_max_value
def process_stage_binary(self, float_interval_min, float_interval_max, stage_min_bin, stage_max_bin):
"""
Processing a stage in the encoding/decoding process.
float_interval_min: The minimum floating-point value in the interval in which the floating-point value that encodes the message is located.
float_interval_max: The maximum floating-point value in the interval in which the floating-point value that encodes the message is located.
stage_min_bin: The minimum binary number in the current stage.
stage_max_bin: The maximum binary number in the current stage.
Returns the probabilities of the terms in this stage. There are only 2 terms.
"""
stage_mid_bin = stage_min_bin + "1"
stage_min_bin = stage_min_bin + "0"
stage_probs = {}
stage_probs[0] = [stage_min_bin, stage_mid_bin]
stage_probs[1] = [stage_mid_bin, stage_max_bin]
return stage_probs
def encode_binary(self, float_interval_min, float_interval_max):
"""
Calculates the binary code that represents the floating-point value that encodes the message.
float_interval_min: The minimum floating-point value in the interval in which the floating-point value that encodes the message is located.
float_interval_max: The maximum floating-point value in the interval in which the floating-point value that encodes the message is located.
Returns the binary code representing the encoded message.
"""
binary_encoder = []
binary_code = None
stage_min_bin = "0.0"
stage_max_bin = "1.0"
stage_probs = {}
stage_probs[0] = [stage_min_bin, "0.1"]
stage_probs[1] = ["0.1", stage_max_bin]
while True:
if float_interval_max < bin2float(stage_probs[0][1]):
stage_min_bin = stage_probs[0][0]
stage_max_bin = stage_probs[0][1]
else:
stage_min_bin = stage_probs[1][0]
stage_max_bin = stage_probs[1][1]
if self.save_stages:
binary_encoder.append(stage_probs)
stage_probs = self.process_stage_binary(float_interval_min,
float_interval_max,
stage_min_bin,
stage_max_bin)
# print(stage_probs[0][0], bin2float(stage_probs[0][0]))
# print(stage_probs[0][1], bin2float(stage_probs[0][1]))
if (bin2float(stage_probs[0][0]) >= float_interval_min) and (
bin2float(stage_probs[0][1]) < float_interval_max):
# The binary code is found.
# print(stage_probs[0][0], bin2float(stage_probs[0][0]))
# print(stage_probs[0][1], bin2float(stage_probs[0][1]))
# print("The binary code is : ", stage_probs[0][0])
binary_code = stage_probs[0][0]
break
elif (bin2float(stage_probs[1][0]) >= float_interval_min) and (
bin2float(stage_probs[1][1]) < float_interval_max):
# The binary code is found.
# print(stage_probs[1][0], bin2float(stage_probs[1][0]))
# print(stage_probs[1][1], bin2float(stage_probs[1][1]))
# print("The binary code is : ", stage_probs[1][0])
binary_code = stage_probs[1][0]
break
if self.save_stages:
binary_encoder.append(stage_probs)
return binary_code, binary_encoder
def custom_binary_encoding(self, float_interval_min, float_interval_max):
"""
Find the binary representation of the floating punt number which lies in
[float_interval_min, float_interval_max).
float_interval_min: float
float_interval_max: float
"""
code = []
found = False
next_n = 0.5
n = 0
while not found:
if n + next_n < float_interval_max:
code.append(1)
n += next_n
if n >= float_interval_min:
found = True
else:
code.append(0)
next_n /= 2
return ''.join(map(str, code))
def decode(self, encoded_msg, msg_length, probability_table):
"""
Decodes a message from a floating-point number.
encoded_msg: The floating-point value that encodes the message.
msg_length: Length of the message.
probability_table: The probability table.
Returns the decoded message.
"""
decoder = []
decoded_msg = []
stage_min = Decimal(0.0)
stage_max = Decimal(1.0)
for idx in range(msg_length):
stage_probs = self.process_stage(probability_table, stage_min, stage_max)
for msg_term, value in stage_probs.items():
if encoded_msg >= value[0] and encoded_msg <= value[1]:
break
decoded_msg.append(msg_term)
stage_min = stage_probs[msg_term][0]
stage_max = stage_probs[msg_term][1]
if self.save_stages:
decoder.append(stage_probs)
if self.save_stages:
last_stage_probs = self.process_stage(probability_table, stage_min, stage_max)
decoder.append(last_stage_probs)
return decoded_msg, decoder
def float2bin(float_num, num_bits=None):
"""
Converts a floating-point number into binary.
float_num: The floating-point number.
num_bits: The number of bits expected in the result. If None, then the number of bits depends on the number.
Returns the binary representation of the number.
"""
float_num = str(float_num)
if float_num.find(".") == -1:
# No decimals in the floating-point number.
integers = float_num
decimals = ""
else:
integers, decimals = float_num.split(".")
decimals = "0." + decimals
decimals = Decimal(decimals)
integers = int(integers)
result = ""
num_used_bits = 0
while True:
mul = decimals * 2
int_part = int(mul)
result = result + str(int_part)
num_used_bits = num_used_bits + 1
decimals = mul - int(mul)
if type(num_bits) is type(None):
if decimals == 0:
break
elif num_used_bits >= num_bits:
break
if type(num_bits) is type(None):
pass
elif len(result) < num_bits:
num_remaining_bits = num_bits - len(result)
result = result + "0" * num_remaining_bits
integers_bin = bin(integers)[2:]
result = str(integers_bin) + "." + str(result)
return result
def bin2float(bin_num):
"""
Converts a binary number to a floating-point number.
bin_num: The binary number as a string.
Returns the floating-point representation.
"""
if bin_num.find(".") == -1:
# No decimals in the binary number.
integers = bin_num
decimals = ""
else:
integers, decimals = bin_num.split(".")
result = Decimal(0.0)
# Working with integers.
for idx, bit in enumerate(integers):
if bit == "0":
continue
mul = 2 ** idx
result = result + Decimal(mul)
# Working with decimals.
for idx, bit in enumerate(decimals):
if bit == "0":
continue
mul = Decimal(1.0) / Decimal((2 ** (idx + 1)))
result = result + mul
return result
if __name__ == "__main__":
coder = CustomArithmeticEncoding({})
low = 0.00324
high = 0.357
# slow_code = coder.encode_binary(low, high)
fast_code = coder.custom_binary_encoding(low, high)
# print(slow_code)
print(fast_code)

601
src/utils/reference_ae.py Normal file
View file

@ -0,0 +1,601 @@
#
# Reference arithmetic coding
#
# Copyright (c) Project Nayuki
# MIT License. See readme file.
# https://www.nayuki.io/page/reference-arithmetic-coding
#
# ---- Arithmetic coding core classes ----
# Provides the state and behaviors that arithmetic coding encoders and decoders share.
class ArithmeticCoderBase:
# Constructs an arithmetic coder, which initializes the code range.
def __init__(self, numbits):
if numbits < 1:
raise ValueError("State size out of range")
# -- Configuration fields --
# Number of bits for the 'low' and 'high' state variables. Must be at least 1.
# - Larger values are generally better - they allow a larger maximum frequency total (maximum_total),
# and they reduce the approximation error inherent in adapting fractions to integers;
# both effects reduce the data encoding loss and asymptotically approach the efficiency
# of arithmetic coding using exact fractions.
# - But larger state sizes increase the computation time for integer arithmetic,
# and compression gains beyond ~30 bits essentially zero in real-world applications.
# - Python has native bigint arithmetic, so there is no upper limit to the state size.
# For Java and C++ where using native machine-sized integers makes the most sense,
# they have a recommended value of num_state_bits=32 as the most versatile setting.
self.num_state_bits = numbits
# Maximum range (high+1-low) during coding (trivial), which is 2^num_state_bits = 1000...000.
self.full_range = 1 << self.num_state_bits
# The top bit at width num_state_bits, which is 0100...000.
self.half_range = self.full_range >> 1 # Non-zero
# The second highest bit at width num_state_bits, which is 0010...000. This is zero when num_state_bits=1.
self.quarter_range = self.half_range >> 1 # Can be zero
# Minimum range (high+1-low) during coding (non-trivial), which is 0010...010.
self.minimum_range = self.quarter_range + 2 # At least 2
# Maximum allowed total from a frequency table at all times during coding. This differs from Java
# and C++ because Python's native bigint avoids constraining the size of intermediate computations.
self.maximum_total = self.minimum_range
# Bit mask of num_state_bits ones, which is 0111...111.
self.state_mask = self.full_range - 1
# -- State fields --
# Low end of this arithmetic coder's current range. Conceptually has an infinite number of trailing 0s.
self.low = 0
# High end of this arithmetic coder's current range. Conceptually has an infinite number of trailing 1s.
self.high = self.state_mask
# Updates the code range (low and high) of this arithmetic coder as a result
# of processing the given symbol with the given frequency table.
# Invariants that are true before and after encoding/decoding each symbol
# (letting full_range = 2^num_state_bits):
# - 0 <= low <= code <= high < full_range. ('code' exists only in the decoder.)
# Therefore these variables are unsigned integers of num_state_bits bits.
# - low < 1/2 * full_range <= high.
# In other words, they are in different halves of the full range.
# - (low < 1/4 * full_range) || (high >= 3/4 * full_range).
# In other words, they are not both in the middle two quarters.
# - Let range = high - low + 1, then full_range/4 < minimum_range
# <= range <= full_range. These invariants for 'range' essentially
# dictate the maximum total that the incoming frequency table can have.
def update(self, freqs, symbol):
# State check
low = self.low
high = self.high
if low >= high or (low & self.state_mask) != low or (high & self.state_mask) != high:
raise AssertionError("Low or high out of range")
range = high - low + 1
if not (self.minimum_range <= range <= self.full_range):
raise AssertionError("Range out of range")
# Frequency table values check
total = freqs.get_total()
symlow = freqs.get_low(symbol)
symhigh = freqs.get_high(symbol)
if symlow == symhigh:
raise ValueError("Symbol has zero frequency")
if total > self.maximum_total:
raise ValueError("Cannot code symbol because total is too large")
# Update range
newlow = low + symlow * range // total
newhigh = low + symhigh * range // total - 1
self.low = newlow
self.high = newhigh
# While low and high have the same top bit value, shift them out
while ((self.low ^ self.high) & self.half_range) == 0:
self.shift()
self.low = ((self.low << 1) & self.state_mask)
self.high = ((self.high << 1) & self.state_mask) | 1
# Now low's top bit must be 0 and high's top bit must be 1
# While low's top two bits are 01 and high's are 10, delete the second highest bit of both
while (self.low & ~self.high & self.quarter_range) != 0:
self.underflow()
self.low = (self.low << 1) ^ self.half_range
self.high = ((self.high ^ self.half_range) << 1) | self.half_range | 1
# Called to handle the situation when the top bit of 'low' and 'high' are equal.
def shift(self):
raise NotImplementedError()
# Called to handle the situation when low=01(...) and high=10(...).
def underflow(self):
raise NotImplementedError()
# Encodes symbols and writes to an arithmetic-coded bit stream.
class ArithmeticEncoder(ArithmeticCoderBase):
# Constructs an arithmetic coding encoder based on the given bit output stream.
def __init__(self, numbits, bitout):
super(ArithmeticEncoder, self).__init__(numbits)
# The underlying bit output stream.
self.output = bitout
# Number of saved underflow bits. This value can grow without bound.
self.num_underflow = 0
# Encodes the given symbol based on the given frequency table.
# This updates this arithmetic coder's state and may write out some bits.
def write(self, freqs, symbol):
if not isinstance(freqs, CheckedFrequencyTable):
freqs = CheckedFrequencyTable(freqs)
self.update(freqs, symbol)
# Terminates the arithmetic coding by flushing any buffered bits, so that the output can be decoded properly.
# It is important that this method must be called at the end of the each encoding process.
# Note that this method merely writes data to the underlying output stream but does not close it.
def finish(self):
self.output.write(1)
def shift(self):
bit = self.low >> (self.num_state_bits - 1)
self.output.write(bit)
# Write out the saved underflow bits
for _ in range(self.num_underflow):
self.output.write(bit ^ 1)
self.num_underflow = 0
def underflow(self):
self.num_underflow += 1
# Reads from an arithmetic-coded bit stream and decodes symbols.
class ArithmeticDecoder(ArithmeticCoderBase):
# Constructs an arithmetic coding decoder based on the
# given bit input stream, and fills the code bits.
def __init__(self, numbits, bitin):
super(ArithmeticDecoder, self).__init__(numbits)
# The underlying bit input stream.
self.input = bitin
# The current raw code bits being buffered, which is always in the range [low, high].
self.code = 0
for _ in range(self.num_state_bits):
self.code = self.code << 1 | self.read_code_bit()
# Decodes the next symbol based on the given frequency table and returns it.
# Also updates this arithmetic coder's state and may read in some bits.
def read(self, freqs):
if not isinstance(freqs, CheckedFrequencyTable):
freqs = CheckedFrequencyTable(freqs)
# Translate from coding range scale to frequency table scale
total = freqs.get_total()
if total > self.maximum_total:
raise ValueError("Cannot decode symbol because total is too large")
range = self.high - self.low + 1
offset = self.code - self.low
value = ((offset + 1) * total - 1) // range
assert value * range // total <= offset
assert 0 <= value < total
# A kind of binary search. Find highest symbol such that freqs.get_low(symbol) <= value.
start = 0
end = freqs.get_symbol_limit()
while end - start > 1:
middle = (start + end) >> 1
if freqs.get_low(middle) > value:
end = middle
else:
start = middle
assert start + 1 == end
symbol = start
assert freqs.get_low(symbol) * range // total <= offset < freqs.get_high(symbol) * range // total
self.update(freqs, symbol)
if not (self.low <= self.code <= self.high):
raise AssertionError("Code out of range")
return symbol
def shift(self):
self.code = ((self.code << 1) & self.state_mask) | self.read_code_bit()
def underflow(self):
self.code = (self.code & self.half_range) | ((self.code << 1) & (self.state_mask >> 1)) | self.read_code_bit()
# Returns the next bit (0 or 1) from the input stream. The end
# of stream is treated as an infinite number of trailing zeros.
def read_code_bit(self):
temp = self.input.read()
if temp == -1:
temp = 0
return temp
# ---- Frequency table classes ----
# A table of symbol frequencies. The table holds data for symbols numbered from 0
# to get_symbol_limit()-1. Each symbol has a frequency, which is a non-negative integer.
# Frequency table objects are primarily used for getting cumulative symbol
# frequencies. These objects can be mutable depending on the implementation.
class FrequencyTable:
# Returns the number of symbols in this frequency table, which is a positive number.
def get_symbol_limit(self):
raise NotImplementedError()
# Returns the frequency of the given symbol. The returned value is at least 0.
def get(self, symbol):
raise NotImplementedError()
# Sets the frequency of the given symbol to the given value.
# The frequency value must be at least 0.
def set(self, symbol, freq):
raise NotImplementedError()
# Increments the frequency of the given symbol.
def increment(self, symbol):
raise NotImplementedError()
# Returns the total of all symbol frequencies. The returned value is at
# least 0 and is always equal to get_high(get_symbol_limit() - 1).
def get_total(self):
raise NotImplementedError()
# Returns the sum of the frequencies of all the symbols strictly
# below the given symbol value. The returned value is at least 0.
def get_low(self, symbol):
raise NotImplementedError()
# Returns the sum of the frequencies of the given symbol
# and all the symbols below. The returned value is at least 0.
def get_high(self, symbol):
raise NotImplementedError()
# An immutable frequency table where every symbol has the same frequency of 1.
# Useful as a fallback model when no statistics are available.
class FlatFrequencyTable(FrequencyTable):
# Constructs a flat frequency table with the given number of symbols.
def __init__(self, numsyms):
if numsyms < 1:
raise ValueError("Number of symbols must be positive")
self.numsymbols = numsyms # Total number of symbols, which is at least 1
# Returns the number of symbols in this table, which is at least 1.
def get_symbol_limit(self):
return self.numsymbols
# Returns the frequency of the given symbol, which is always 1.
def get(self, symbol):
self._check_symbol(symbol)
return 1
# Returns the total of all symbol frequencies, which is
# always equal to the number of symbols in this table.
def get_total(self):
return self.numsymbols
# Returns the sum of the frequencies of all the symbols strictly below
# the given symbol value. The returned value is equal to 'symbol'.
def get_low(self, symbol):
self._check_symbol(symbol)
return symbol
# Returns the sum of the frequencies of the given symbol and all
# the symbols below. The returned value is equal to 'symbol' + 1.
def get_high(self, symbol):
self._check_symbol(symbol)
return symbol + 1
# Returns silently if 0 <= symbol < numsymbols, otherwise raises an exception.
def _check_symbol(self, symbol):
if not (0 <= symbol < self.numsymbols):
raise ValueError("Symbol out of range")
# Returns a string representation of this frequency table. The format is subject to change.
def __str__(self):
return "FlatFrequencyTable={}".format(self.numsymbols)
# Unsupported operation, because this frequency table is immutable.
def set(self, symbol, freq):
raise NotImplementedError()
# Unsupported operation, because this frequency table is immutable.
def increment(self, symbol):
raise NotImplementedError()
# A mutable table of symbol frequencies. The number of symbols cannot be changed
# after construction. The current algorithm for calculating cumulative frequencies
# takes linear time, but there exist faster algorithms such as Fenwick trees.
class SimpleFrequencyTable(FrequencyTable):
# Constructs a simple frequency table in one of two ways:
# - SimpleFrequencyTable(sequence):
# Builds a frequency table from the given sequence of symbol frequencies.
# There must be at least 1 symbol, and no symbol has a negative frequency.
# - SimpleFrequencyTable(freqtable):
# Builds a frequency table by copying the given frequency table.
def __init__(self, freqs):
if isinstance(freqs, FrequencyTable):
numsym = freqs.get_symbol_limit()
self.frequencies = [freqs.get(i) for i in range(numsym)]
else: # Assume it is a sequence type
self.frequencies = list(freqs) # Make copy
# 'frequencies' is a list of the frequency for each symbol.
# Its length is at least 1, and each element is non-negative.
if len(self.frequencies) < 1:
raise ValueError("At least 1 symbol needed")
for freq in self.frequencies:
if freq < 0:
raise ValueError("Negative frequency")
# Always equal to the sum of 'frequencies'
self.total = sum(self.frequencies)
# cumulative[i] is the sum of 'frequencies' from 0 (inclusive) to i (exclusive).
# Initialized lazily. When it is not None, the data is valid.
self.cumulative = None
# Returns the number of symbols in this frequency table, which is at least 1.
def get_symbol_limit(self):
return len(self.frequencies)
# Returns the frequency of the given symbol. The returned value is at least 0.
def get(self, symbol):
self._check_symbol(symbol)
return self.frequencies[symbol]
# Sets the frequency of the given symbol to the given value. The frequency value
# must be at least 0. If an exception is raised, then the state is left unchanged.
def set(self, symbol, freq):
self._check_symbol(symbol)
if freq < 0:
raise ValueError("Negative frequency")
temp = self.total - self.frequencies[symbol]
assert temp >= 0
self.total = temp + freq
self.frequencies[symbol] = freq
self.cumulative = None
# Increments the frequency of the given symbol.
def increment(self, symbol):
self._check_symbol(symbol)
self.total += 1
self.frequencies[symbol] += 1
self.cumulative = None
# Returns the total of all symbol frequencies. The returned value is at
# least 0 and is always equal to get_high(get_symbol_limit() - 1).
def get_total(self):
return self.total
# Returns the sum of the frequencies of all the symbols strictly
# below the given symbol value. The returned value is at least 0.
def get_low(self, symbol):
self._check_symbol(symbol)
if self.cumulative is None:
self._init_cumulative()
return self.cumulative[symbol]
# Returns the sum of the frequencies of the given symbol
# and all the symbols below. The returned value is at least 0.
def get_high(self, symbol):
self._check_symbol(symbol)
if self.cumulative is None:
self._init_cumulative()
return self.cumulative[symbol + 1]
# Recomputes the array of cumulative symbol frequencies.
def _init_cumulative(self):
cumul = [0]
sum = 0
for freq in self.frequencies:
sum += freq
cumul.append(sum)
assert sum == self.total
self.cumulative = cumul
# Returns silently if 0 <= symbol < len(frequencies), otherwise raises an exception.
def _check_symbol(self, symbol):
if not (0 <= symbol < len(self.frequencies)):
raise ValueError("Symbol out of range")
# Returns a string representation of this frequency table,
# useful for debugging only, and the format is subject to change.
def __str__(self):
result = ""
for (i, freq) in enumerate(self.frequencies):
result += "{}\t{}\n".format(i, freq)
return result
# A wrapper that checks the preconditions (arguments) and postconditions (return value) of all
# the frequency table methods. Useful for finding faults in a frequency table implementation.
class CheckedFrequencyTable(FrequencyTable):
def __init__(self, freqtab):
# The underlying frequency table that holds the data
self.freqtable = freqtab
def get_symbol_limit(self):
result = self.freqtable.get_symbol_limit()
if result <= 0:
raise AssertionError("Non-positive symbol limit")
return result
def get(self, symbol):
result = self.freqtable.get(symbol)
if not self._is_symbol_in_range(symbol):
raise AssertionError("ValueError expected")
if result < 0:
raise AssertionError("Negative symbol frequency")
return result
def get_total(self):
result = self.freqtable.get_total()
if result < 0:
raise AssertionError("Negative total frequency")
return result
def get_low(self, symbol):
if self._is_symbol_in_range(symbol):
low = self.freqtable.get_low (symbol)
high = self.freqtable.get_high(symbol)
if not (0 <= low <= high <= self.freqtable.get_total()):
raise AssertionError("Symbol low cumulative frequency out of range")
return low
else:
self.freqtable.get_low(symbol)
raise AssertionError("ValueError expected")
def get_high(self, symbol):
if self._is_symbol_in_range(symbol):
low = self.freqtable.get_low (symbol)
high = self.freqtable.get_high(symbol)
if not (0 <= low <= high <= self.freqtable.get_total()):
raise AssertionError("Symbol high cumulative frequency out of range")
return high
else:
self.freqtable.get_high(symbol)
raise AssertionError("ValueError expected")
def __str__(self):
return "CheckedFrequencyTable (" + str(self.freqtable) + ")"
def set(self, symbol, freq):
self.freqtable.set(symbol, freq)
if not self._is_symbol_in_range(symbol) or freq < 0:
raise AssertionError("ValueError expected")
def increment(self, symbol):
self.freqtable.increment(symbol)
if not self._is_symbol_in_range(symbol):
raise AssertionError("ValueError expected")
def _is_symbol_in_range(self, symbol):
return 0 <= symbol < self.get_symbol_limit()
# ---- Bit-oriented I/O streams ----
# A stream of bits that can be read. Because they come from an underlying byte stream,
# the total number of bits is always a multiple of 8. The bits are read in big endian.
class BitInputStream:
# Constructs a bit input stream based on the given byte input stream.
def __init__(self, inp):
# The underlying byte stream to read from
self.input = inp
# Either in the range [0x00, 0xFF] if bits are available, or -1 if end of stream is reached
self.currentbyte = 0
# Number of remaining bits in the current byte, always between 0 and 7 (inclusive)
self.numbitsremaining = 0
# Reads a bit from this stream. Returns 0 or 1 if a bit is available, or -1 if
# the end of stream is reached. The end of stream always occurs on a byte boundary.
def read(self):
if self.currentbyte == -1:
return -1
if self.numbitsremaining == 0:
temp = self.input.read(1)
if len(temp) == 0:
self.currentbyte = -1
return -1
self.currentbyte = temp[0]
self.numbitsremaining = 8
assert self.numbitsremaining > 0
self.numbitsremaining -= 1
return (self.currentbyte >> self.numbitsremaining) & 1
# Reads a bit from this stream. Returns 0 or 1 if a bit is available, or raises an EOFError
# if the end of stream is reached. The end of stream always occurs on a byte boundary.
def read_no_eof(self):
result = self.read()
if result != -1:
return result
else:
raise EOFError()
# Closes this stream and the underlying input stream.
def close(self):
self.input.close()
self.currentbyte = -1
self.numbitsremaining = 0
# A stream where bits can be written to. Because they are written to an underlying
# byte stream, the end of the stream is padded with 0's up to a multiple of 8 bits.
# The bits are written in big endian.
class BitOutputStream:
# Constructs a bit output stream based on the given byte output stream.
def __init__(self, out):
self.output = out # The underlying byte stream to write to
self.currentbyte = 0 # The accumulated bits for the current byte, always in the range [0x00, 0xFF]
self.numbitsfilled = 0 # Number of accumulated bits in the current byte, always between 0 and 7 (inclusive)
# Writes a bit to the stream. The given bit must be 0 or 1.
def write(self, b):
if b not in (0, 1):
raise ValueError("Argument must be 0 or 1")
self.currentbyte = (self.currentbyte << 1) | b
self.numbitsfilled += 1
if self.numbitsfilled == 8:
towrite = bytes((self.currentbyte,))
self.output.write(towrite)
self.currentbyte = 0
self.numbitsfilled = 0
# Closes this stream and the underlying output stream. If called when this
# bit stream is not at a byte boundary, then the minimum number of "0" bits
# (between 0 and 7 of them) are written as padding to reach the next byte boundary.
def close(self):
while self.numbitsfilled != 0:
self.write(0)
self.output.close()

13
uv.lock generated
View file

@ -163,6 +163,11 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/7f/9c/36c5c37947ebfb8c7f22e0eb6e4d188ee2d53aa3880f3f2744fb894f0cb1/anyio-4.12.0-py3-none-any.whl", hash = "sha256:dad2376a628f98eeca4881fc56cd06affd18f659b17a747d3ff0307ced94b1bb", size = 113362, upload-time = "2025-11-28T23:36:57.897Z" },
]
[[package]]
name = "arithmeticencodingpython"
version = "1.0.0"
source = { git = "https://github.com/ahmedfgad/ArithmeticEncodingPython.git?rev=60aad0528c57289218b241d75993574f31b90456#60aad0528c57289218b241d75993574f31b90456" }
[[package]]
name = "attrs"
version = "25.4.0"
@ -1709,6 +1714,7 @@ name = "project-ml"
version = "0.1.0"
source = { virtual = "." }
dependencies = [
{ name = "arithmeticencodingpython" },
{ name = "datasets" },
{ name = "fsspec" },
{ name = "lorem" },
@ -1731,6 +1737,7 @@ dev = [
[package.metadata]
requires-dist = [
{ name = "arithmeticencodingpython", git = "https://github.com/ahmedfgad/ArithmeticEncodingPython.git?rev=60aad0528c57289218b241d75993574f31b90456" },
{ name = "biopython", marker = "extra == 'dataset'", specifier = ">=1.86" },
{ name = "datasets", specifier = "<4.0.0" },
{ name = "fsspec", specifier = "==2024.9.0" },
@ -2383,11 +2390,11 @@ wheels = [
[[package]]
name = "urllib3"
version = "2.6.1"
version = "2.6.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/5e/1d/0f3a93cca1ac5e8287842ed4eebbd0f7a991315089b1a0b01c7788aa7b63/urllib3-2.6.1.tar.gz", hash = "sha256:5379eb6e1aba4088bae84f8242960017ec8d8e3decf30480b3a1abdaa9671a3f", size = 432678, upload-time = "2025-12-08T15:25:26.773Z" }
sdist = { url = "https://files.pythonhosted.org/packages/1e/24/a2a2ed9addd907787d7aa0355ba36a6cadf1768b934c652ea78acbd59dcd/urllib3-2.6.2.tar.gz", hash = "sha256:016f9c98bb7e98085cb2b4b17b87d2c702975664e4f060c6532e64d1c1a5e797", size = 432930, upload-time = "2025-12-11T15:56:40.252Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/bc/56/190ceb8cb10511b730b564fb1e0293fa468363dbad26145c34928a60cb0c/urllib3-2.6.1-py3-none-any.whl", hash = "sha256:e67d06fe947c36a7ca39f4994b08d73922d40e6cca949907be05efa6fd75110b", size = 131138, upload-time = "2025-12-08T15:25:25.51Z" },
{ url = "https://files.pythonhosted.org/packages/6d/b9/4095b668ea3678bf6a0af005527f39de12fb026516fb3df17495a733b7f8/urllib3-2.6.2-py3-none-any.whl", hash = "sha256:ec21cddfe7724fc7cb4ba4bea7aa8e2ef36f607a4bab81aa6ce42a13dc3f03dd", size = 131182, upload-time = "2025-12-11T15:56:38.584Z" },
]
[[package]]