RPG Engine

Write a game engine for an RPG game

Tibo De Peuter

23 december 2022

RPG Engine 23 december 2022

Contents
RPG-Engine 2
Playingthegame e 2
Example playthrough 3
Writingyourownstages L 4
Tayoutsyntax o o o e e e e e e 6
actionssyntax e e e e e 6
Backtotheexample e 7
Developmentnotes o . e e e e 8
Enginearchitecture L e e 8
TestS . . e e e e e e e e 8
Assets&dependencies e e e e e 8
Future developmentideas e 8
Conclusion o o 10
References o 11
RPG-Engine

RPG-Engine is a game engine for playing and creating your own RPG games.
If you are interested in the development side of things, development notes can be found here.

This README serves as both documentation and project report, so excuse the details that might not
be important for the average user.

Playing the game

These are the keybinds in the game. All other keybinds in the menus should be straightforward.

Action Primary Secondary
Move up Arrow Up w

Move left Arrow Left a

Move down Arrow Down S

Move right Arrow Right d
Interaction Space f

Show inventory 1 Tab
Restart level r

Quit game Esc

Tibo De Peuter 2

RPG Engine 23 december 2022

Example playthrough

TODO

» An example playthrough, with pictures and explanations

Tibo De Peuter 3

RPG Engine 23 december 2022

Writing your own stages

A stage description file, conventionally named <stage_name>. txt is a file with a JSON-like format.
It is used to describe everything inside a single stage of your game, including anything related to
the player, the levels your game contains and what happens in that level. It is essentially the raw
representation of the initial state of a single game.

Note: At the moment, every game has a single stage description file. Chaining several files
together is not possible yet.

A stage description file consists of several elements.

Element Short description

Block optionally surrounded by { ... 1}, consistsof several Entry’s, optionally separated
by commas ,

Entry is a Key - Va'lue pair, optionally separated by a colon :

Key is a unique, predefined String describing Value

Value is eithera Block ora BlockL1ist oratraditional value, such as StringorInt
Block- isa number of Block’s, surrounded by [...], separated by commas, can be
List empty

We'll look at the following example to explain these concepts.

player: {
hp: 50,
inventory: [
{
id: "dagger",
x: 0,
y: 07
name: '"Dagger",
description: "Basic dagger you found somewhere'",
useTimes: infinite,
value: 10,
actions: {}
}
]
}
levels: [
{
layout: {

|******

Tibo De Peuter 4

RPG Engine 23 december 2022

| s . . e *
|******
1,
items: [],
entities: []

-~

layout:

>
>*
*
*
*
>
>

id: "key",

X: 3,

y: 1,

name: "Door key'",

description: "Unlocks a secret door",

useTimes: 1,

value: 0,

actions: {
[not(inventoryFull())] retrieveItem(key),
[1 leave()

]’
entities: [
{
id: "door",
X: 4,
y: 1,
name: "Secret door",
description: "This secret door can only be opened with a
o key",
direction: Tleft,
actions: {
[inventoryContains(key)] uselItem(key),
[1 leave()

]

This stage description file consists of a single Block. A stage description file always does. This top
level Block contains two Values player and levels, not separated by commas.

player describes a Block that represents the player of the game. Its Entrys are hp (a traditional

Tibo De Peuter 5

RPG Engine 23 december 2022

value)andinventory (aBlockL1ist ofseveralotherBlocks). They are both separated by commas
this time. Itis possible for the inventory to be an empty list [].

levelsisaBlockList that contains all the information to construct your game.

layout syntax

If Key has the value Layout, Value is none of the types discussed so far. Instead Layout is spe-
cifically made to describe the layout of a level. This objectis surrounded by { ... } and consists of
multiple lines, starting with a vertical line | and several characters of the following:

« X isan empty tile a.k.a. void.

+ . isatile walkable by the player.

« * is atile not walkable by the player.

+ sisthe starting position of the player.
+ eisthe exit.

All characters are interspersed with spaces.

actions syntax

If Key has the value actions, the following changes are important for its Value, which in this case
isa Block with zero or more Entrys like so:

+ Key hastype ConditionList.

A ConditionList consists of several Conditions,surroundedby [...],separated by
commas. A ConditionList canbeempty. If so, the conditional is always fulfilled.

A Cond-itionisone of the following:

- inventoryFull(): the players inventory is full.

- inventoryContains(objectId): the playersinventory contains an object with id
objectId.

- not(condition): logical negation of condition.

« ValueisanAction.

An Actionis one of the following:

leave()

retrieveltem(objectId)
useltem(objectId)
decreaseHp(entityId, objectId)

increasePlayerHp(objectId)

Tibo De Peuter 6

RPG Engine 23 december 2022

Back to the example
If we look at the example, all the objects are

>Block<
Entry = Key ('player') + >Block<

Entry = Key ('hp') + Value (50)

Entry = Key ('inventory') + >BlockList<
length = 1
Block

Entry = Key ('id') + Value ("dagger")
<several traditional entries like this>
Entry = Key ('actions') + empty Block
Entry = Key ('levels') + >BlockList<
length = 2
>Block<
Entry = Key ('layout') + Layout

<multiple lines that describe the layout>

Entry = Key ('items') + empty BlockList

Entry = Key ('entities') + empty BlockList
>Block<

Entry = Key ('layout') + Layout

<multiple lines that describe the layout>
Entry = Key ('items') + >BlockList<
length = 1
>Block<
Entry = Key ('id') + Value ("key")
<several traditional entries like this>
Entry = Key ('actions') + >Block<
Entry = >ConditionList< + Action ('retrieveltem(key)"')
length = 1
Condition ('not(inventoryFull())'))
Entry = empty ConditionList + Action ('leave()')
Entry = Key ('entities') + >BlockList<
length = 1
>Block<
Entry = Key ('id') + Value ("door")
<several traditional entries like this>
Entry = Key ('actions') + >Block<
Entry = >ConditionList< + Action ('useItem(key)')
length = 1
Condition ('inventoryContains(key)')
Entry = empty ConditionList + Action ('leave()')

Tibo De Peuter 7

RPG Engine 23 december 2022

Development notes
Engine architecture

TODO

RPGEng1ine is the main module. It contains the playRPGEng1ine function which bootstraps the
whole game. It is also the game loop. From here, RPGEng1ine talks to its submodules.

These submodules are Config, Data, Input, Parse &Render. They are all responsible for their
own part, either containing the program configuration, data containers, everything needed to handle
input, everything needed to parse a source file & everything needed to render the game. However,
each of these submodules has their own submodules to divide the work. They are conveniently named
after the state of the game that they work with, e.g. the main menu has a module & when the game is
playing is a different module. A special one is Core, which is kind of like a library for every piece. It
contains functions that are regularly used by the other modules.

Monads/Monad stack TODO

Tests

TODO

Assets & dependencies

The following assets were used (and modified if specified):

« Kyrise’s Free 16x16 RPG Icon Pack[1]
+ 2D Pixel Dungeon Asset Pack by Pixel_Poem[2]

Every needed asset was taken and put into its own . png, instead of in the overview.
RPG-Engine makes use of the following libraries:

« directory for listing levels in a directory

+ gloss for game rendering

+ gloss-juicy for rendering images

+ hspec for testing

+ hspec-discover for allowing to split test files in multiple files
« parsec for parsing configuration files

Future development ideas

The following ideas could (or should) be implemented in the future of this project.

Tibo De Peuter 8

https://hackage.haskell.org/package/directory
https://hackage.haskell.org/package/gloss
https://hackage.haskell.org/package/gloss-juicy
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/parsec

RPG Engine 23 december 2022

0 Entity system: With en ES, you can implement moving entities and repeated input. It also
resembles the typical game loop more closely which can make it easier to implement other
ideas in the future.

[0 Game music: Ambient game music and sound effects can improve the gaming experience |
think.

0 Expand configuration file: Implement the same methods for parsing stage description files to
a configuration file, containing keybinds, dimension sizes, even window titles, making this a
truly customizable engine.

[J Camera follows player: The camera should follow the player, making it always center. This
allows for larger levels increases the immersion of the game.

Tibo De Peuter 9

RPG Engine 23 december 2022

Conclusion

Parsing was way harder than I initially expected. About half of my time on this project was spent

writing the parser.

TODO

Tibo De Peuter 10

RPG Engine 23 december 2022

References

[1] Kyrise’s Free 16x16 RPG Icon Pack © 2018 by Kyrise is licensed under CC BY 4.0

[2] 2D Pixel Dungeon Asset Pack by Pixel_Poem is not licensed

Tibo De Peuter 11

https://kyrise.itch.io/kyrises-free-16x16-rpg-icon-pack
https://kyrise.itch.io/
http://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://pixel-poem.itch.io/dungeon-assetpuck
https://pixel-poem.itch.io/

	RPG-Engine
	Playing the game
	Example playthrough

	Writing your own stages
	layout syntax
	actions syntax
	Back to the example

	Development notes
	Engine architecture
	Tests
	Assets & dependencies
	Future development ideas

	Conclusion
	References

