
RPG Engine

Write a game engine for an RPG game

Tibo De Peuter

23 december 2022

RPG Engine 23 december 2022

Contents

RPG-Engine 2
Playing the game . 2

Example playthrough . 3
Development notes . 4

Engine architecture . 4
Tests . 5

Conclusion . 5
Assets & dependencies . 6

References . 7
Appendix A: Future development ideas . 8
Appendix B: Writing your own worlds . 9

layout syntax . 11
actions syntax . 11
Back to the example . 11

RPG-Engine

RPG-Engine is a game engine for playing and creating your own RPG games.

If you are interested in the development side of things, development notes can be found here.

This README serves as both documentation and project report, so excuse the details that might not
be important for the average reader.

Playing the game

These are the keybinds while in game. All other keybinds in menus etc. should be straightforward.

Action Primary Secondary

Move up Arrow Up w

Move left Arrow Left a

Move down Arrow Down s

Move right Arrow Right d

Interaction Space f, Enter

Show inventory i Tab

Restart level r

Quit game Esc

Tibo De Peuter 2

RPG Engine 23 december 2022

Example playthrough

Tibo De Peuter 3

RPG Engine 23 december 2022

Development notes

Engine architecture

RPGEngine is the main module. It contains the playRPGEngine function which bootstraps the
whole game. It is also the game loop. From here, RPGEngine talks to its submodules.

These submodules are Config, Data, Input, Parse & Render. They are all responsible for their
own part. However, each of these submodules has their own submodules to divide the work. They are
conveniently named after the state of the game that they work with, e.g. the main menu has a module
& when the game is playing is a different module. A special one is Core, which is kind of like a library
for every piece. It contains functions that are regularly used by the other modules.

• Config: Configuration values, should ultimately be moved into parsing from a file.
• Data: Data containers and accessors of information.
• Input: Anything that handles input or changes the state of the game.
• Parse: Parsing
• Render: Rendering of the game and everything below that.

Monads/Monad stack Monads:

• Extensive use of Maybe for integers or infinity and do in parser implementation.
• IO to handle external information
• …

Monad transformer: ??

I am afraid I did not write anymonad transformers in this project. I think I could (and should) have
focusedmore on writing monads andmonad transformers. In hindsight, I can see where I could and
should have used them. I can think of plenty of ways to make the current implementation simpler.
This is unfortunate. However, I want to believe that my next time writing a more complex Haskell
program, I will remember using monad transformers. Sadly, I forgot this time.

An example of where I would use a monad transformer - in hindsight:

1. Interactions in game: something along the lines of…

newtype StateT m a = StateT { runStateT :: m a }

instance Monad m => Monad (StateT m) where
return = lift . return
x >>= f = StateT $ do

v <- runStateT x
case v of

Playing level -> runStateT (f level)
Paused continue -> runStateT (continue >>= f)
-- etc

Tibo De Peuter 4

RPG Engine 23 december 2022

class MonadTransformer r where
lift :: Monad m => m a -> (r m) a

instance MonadTransformer StateT where
lift = StateT

2. Interaction with the outside world should also be done with Monad(transformers) instead of
using unsafePerformIO.

Tests

Overall, only parsing is tested using Hspec. However, parsing is tested thoroughly and I am quite sure
that there aren’t a lot of edge cases that I did not catch. This makes for a relaxing environment where
you can quickly check if a change youmade breaks anything.

Spec is the main module. It does not contain any tests, but functions as the ‘discover’ module to find
the other tests in its folder.

Parser.StructureSpec tests functionality of RPGEngine.Parse.TextToStructure,
Parser.GameSpec tests functionality of RPGEngine.Parse.StructureToGame.

Known issues:

� Rendering is still not centered, I am sorry for those with small screens.
� Config files cannot end with an empty line. I could not get that to work and I decided that it was

more important to implement other functionality first. Unfortunately, I was not able to get back
to it yet.

� The parser is unable to parse layouts with trailing whitespace.

Conclusion

Parsing was way harder than I initially expected. I believe over half my time on this project was
spent trying to write the parser. I am still not absolutely sure that it will work with everything, but
it gets the job done at the moment. I don’t know if parsing into a structure before transforming the
structure into a game was a goodmove. It might have savedme some time if I did it straight to Game.
I want to say that I have a parser-to-structure module now, but even so, there are some links between
TextToStructure and Game that make it almost useless to any other project (without changing
anything).

Player-object interaction was easier than previous projects. I believe this is both because I am getting
used to it by now and because I spent a lot of time beforehand structuring everything. I also like to
think that structuring the project is what I did right. There is a clear hierarchy and you can find what
you are looking for fairly easy, without having to search for a function in file contents or having to
scavenge multiple different files before finding what you want. However, I absolutely wasted a lot of
time restructuring the project multiple times, mostly because I was running into dependency cycles.

Overall, I believe the project was a success. I am proud of the end result. Though, please note my
comments onmonad transformers.

Tibo De Peuter 5

RPG Engine 23 december 2022

Assets & dependencies

The following assets were used (andmodified if specified):

• Kyrise’s Free 16x16 RPG Icon Pack[1]

• 2D Pixel Dungeon Asset Pack by Pixel_Poem[2]

Every needed asset was taken and put into its own .png, instead of in the overview.

RPG-Engine makes use of the following libraries:

• directory for listing levels in a directory
• gloss for game rendering
• gloss-juicy for rendering images
• hspec for testing
• hspec-discover for allowing to split test files in multiple files
• parsec for parsing configuration files

Tibo De Peuter 6

https://hackage.haskell.org/package/directory
https://hackage.haskell.org/package/gloss
https://hackage.haskell.org/package/gloss-juicy
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/parsec

RPG Engine 23 december 2022

References

[1] Kyrise’s Free 16x16 RPG Icon Pack © 2018 by Kyrise is licensed under CC BY 4.0

[2] 2D Pixel Dungeon Asset Pack by Pixel_Poem is not licensed

Tibo De Peuter 7

https://kyrise.itch.io/kyrises-free-16x16-rpg-icon-pack
https://kyrise.itch.io/
http://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
https://pixel-poem.itch.io/dungeon-assetpuck
https://pixel-poem.itch.io/

RPG Engine 23 december 2022

Appendix A: Future development ideas

The following ideas could (or should) be implemented in the future of this project.

� Entity system: With en ES, you can implement moving entities and repeated input. It also
resembles the typical game loop more closely which can make it easier to implement other
ideas in the future.

� Game music: Ambient game music and sound effects can improve the gaming experience I
think.

� Expand configuration file: Implement the samemethods for parsing stage description files to
a configuration file, containing keybinds, dimension sizes, even window titles, making this a
truly customizable engine.

� Camera follows player: The camera should follow the player, making it always center. This
allows for larger levels increases the immersion of the game.

Changes in the backend:

� Make inventory a state At the moment, there is a boolean for inventory rendering. This should
be turned into a state, so it makes more sense to call it from other places as well.

� Direction of entities Change the rendering based on the direction of an entity.
� Inventorywithmore details The inventory should showmore details of items, e.g. name, value,

remaining use times and description.

Tibo De Peuter 8

RPG Engine 23 december 2022

Appendix B: Writing your ownworlds

A world description file, conventionally named <world_name_or_level_x>.txt is a file with
a JSON-like format. It is used to describe everything inside a single world of your game, including
anything related to the player, the levels your game contains and what happens in that level. It is
essentially the raw representation of the initial state of a single game.

A world description file consists of several elements.

Element Short description

Block optionally surrounded by { ... }, consists of several Entry’s, optionally separated
by commas ,

Entry is a Key - Value pair, optionally separated by a colon :

Key is a unique, predefined String describing Value

Value is either a Block or a BlockList or a traditional value, such as String or Int

Block-
List

is a number of Block’s, surrounded by [...], separated by commas, can be
empty

We’ll look at the following example to explain these concepts.

player: {
hp: 50,
inventory: [

{
id: "dagger",
x: 0,
y: 0,
name: "Dagger",
description: "Basic dagger you found somewhere",
useTimes: infinite,
value: 10,

actions: {}
}

]
}

levels: [
{

layout: {
| * * * * * *
| * s . . e *
| * * * * * *

},
items: [],

Tibo De Peuter 9

RPG Engine 23 december 2022

entities: []
},
{

layout: {
| * * * * * * * *
| * s e *
| * * * * * * * *

},
items: [

{
id: "key",
x: 3,
y: 1,
name: "Door key",
description: "Unlocks a secret door",
useTimes: 1,
value: 0,
actions: {

[not(inventoryFull())] retrieveItem(key),
[] leave()

}
}

],
entities: [

{
id: "door",
x: 4,
y: 1,
name: "Secret door",
description: "This secret door can only be opened with a

key",↪

direction: left,
actions: {

[inventoryContains(key)] useItem(key),
[] leave()

}
}

]
}

]

This world description file consists of a single Block. A world description file always does. This top
level Block contains two Values player and levels, not separated by commas.

player describes a Block that represents the player of the game. Its Entrys are hp (a traditional
value) andinventory (aBlockListof several otherBlocks). Theyareboth separatedbycommas
this time. It is possible for the inventory to be an empty list [].

levels is a BlockList that contains all the information to construct your game.

Tibo De Peuter 10

RPG Engine 23 december 2022

layout syntax

If Key has the value layout, Value is none of the types discussed so far. Instead Layout is spe-
cifically made to describe the layout of a level. This object is surrounded by { ... } and consists of
multiple lines, starting with a vertical line | and several characters of the following:

• x is an empty tile a.k.a. void.
• . is a tile walkable by the player.
• * is a tile not walkable by the player.
• s is the starting position of the player.
• e is the exit.

All characters are interspersed with spaces.

actions syntax

If Key has the value actions, the following changes are important for its Value, which in this case
is a Blockwith zero or more Entrys like so:

• Key has type ConditionList.

A ConditionList consists of several Conditions, surrounded by [...], separated by
commas. A ConditionList can be empty. If so, the conditional is always fulfilled.

A Condition is one of the following:

– inventoryFull(): the players inventory is full.
– inventoryContains(objectId): the players inventory contains an object with id
objectId.

– not(condition): logical negation of condition.

• Value is an Action.

An Action is one of the following:

– leave()
– retrieveItem(objectId)
– useItem(objectId)
– decreaseHp(entityId, objectId)
– increasePlayerHp(objectId)

Back to the example

If we look at the example, all the objects are

>Block<
Entry = Key ('player') + >Block<

Tibo De Peuter 11

RPG Engine 23 december 2022

Entry = Key ('hp') + Value (50)
Entry = Key ('inventory') + >BlockList<

length = 1
Block

Entry = Key ('id') + Value ("dagger")
... <several traditional entries like this>
Entry = Key ('actions') + empty Block

Entry = Key ('levels') + >BlockList<
length = 2
>Block<

Entry = Key ('layout') + Layout
<multiple lines that describe the layout>

Entry = Key ('items') + empty BlockList
Entry = Key ('entities') + empty BlockList

>Block<
Entry = Key ('layout') + Layout

<multiple lines that describe the layout>
Entry = Key ('items') + >BlockList<

length = 1
>Block<

Entry = Key ('id') + Value ("key")
... <several traditional entries like this>
Entry = Key ('actions') + >Block<

Entry = >ConditionList< + Action ('retrieveItem(key)')
length = 1
Condition ('not(inventoryFull())'))

Entry = empty ConditionList + Action ('leave()')
Entry = Key ('entities') + >BlockList<

length = 1
>Block<

Entry = Key ('id') + Value ("door")
... <several traditional entries like this>
Entry = Key ('actions') + >Block<

Entry = >ConditionList< + Action ('useItem(key)')
length = 1
Condition ('inventoryContains(key)')

Entry = empty ConditionList + Action ('leave()')

Tibo De Peuter 12

	RPG-Engine
	Playing the game
	Example playthrough

	Development notes
	Engine architecture
	Tests

	Conclusion
	Assets & dependencies

	References
	Appendix A: Future development ideas
	Appendix B: Writing your own worlds
	layout syntax
	actions syntax
	Back to the example

